Does QUIC Suit Well with Modern Adaptive
Bitrate Streaming Techniques?

Abhijit Mondal, Student Member, IEEE, Sandip Chakraborty, Member, IEEE

Abstract—This letter provides a thorough analysis of various
recent adaptive bitrate streaming (ABR) techniques over Google’s
QUIC protocol. More specifically, we focus on the recent
developments of the ABR techniques using control theoretic and
reinforcement learning based approaches, and compare their
performances over HTTP/TCP and HTTP/QUIC in terms of a
wide range of video quality of experience (QoE) parameters.
We observe that these ABR techniques are more compatible
with HTTP/TCP compared to HTTP/QUIC, and the features of
QUIC demands for new ABR technique which can balance the
three fundamental QoE parameters — bitrate, smoothness and
rebuffering during a video playback.

Index Terms—DASH, ABR, QUIC, TCP

I. INTRODUCTION

Quick UDP Internet Connection (QUIC) [1] has been
developed and experimentally deployed over the Internet
by Google to replace TCP as the transport layer protocol,
while addressing the limitations of TCP for end-to-end
connection managements over a wide range of applications.
While majority of the global Internet traffic originates from
various video streaming applications, QUIC claims to reduce
the YouTube rebuffering by a margin of 18% for desktop
users and 15.3% for mobile users [1]. As Dynamic Adaptive
Streaming over HTTP (DASH) [2] has been a de facto for
Adaptive Bitrate Streaming (ABR) over the Internet, it would
be interesting to explore how QUIC performs over various
ABR techniques proposed in the recent literature in terms of
end users’ quality of experience (QoE).

In DASH, the videos are divided into small segments, and
every segment is encoded in multiple quality levels (bitrates).
The DASH client measures the network condition and requests
for a video segment with the most suited quality level based
on the current network condition. The network measurement
and the corresponding bitrate adaptation algorithm can be
tuned in DASH, and a large number of works have been
proposed in the literature to select the optimal ABR technique,
such as buffer based (BOLA [3]), using control-theoretic
approach (MPC [4]), or based on deep reinforcement learning
(Pensieve [5]). However, these existing approaches do not
look into the impact of the underlying transport protocols
on the video streaming QoE performance. While TCP uses
multiple socket connections to download the video and the
corresponding audio data, QUIC multiplexes the audio and
the video streams over a single UDP socket to download the

A. Mondal and S. Chakraborty are with Department of Computer Science
and Engineering, Indian Institute of Technology Kharagpur, India 721302.
Email: abhimondal @iitkgp.ac.in, sandipc@cse.iitkgp.ac.in

Manuscript received ...; revised August ...

entire data from the server. As the ABR techniques depend on
the channel throughput estimation at the client, such protocol
changes are likely to impact the streaming performance.
With the above context, this letter evaluates and compares
the performance of various ABR techniques over TCP and
QUIC. We develop a testbed setup with the help of a standard
DASH player from the DASH Industry Forum, where we
integrate the DASH player with QUIC and use emulated
network environment based on a large pool of pre-collected
network traffic traces. With a total of 45 hours of streaming
video data, we have computed three QoE metrics — (a)
average playback bitrate, (b) total rebuffering duration, and
(c) playback smoothness, while streaming over both TCP and
QUIC. Our thorough experiments and observations indicate
that recent ABR techniques provides better QoE over TCP
compared to QUIC. We investigate further to understand the
protocol-level behavior of QUIC, which impacts the QoE
performance. Our analysis reported in this letter can help the
community to tweak the QUIC configurations to obtain the
best QoE performance from the modern ABR techniques.

II. RELATED WORK

Various recent studies [6], [7] have revealed that QUIC
can improve the web performance by reducing the page
load time even at poor network conditions. Among them, a
few works have explored the adaptive streaming performance
over QUIC. In [8], the authors have empirically shown that
DASH suffers over QUIC. Although they have given the
first indication that the current ABR techniques might not
perform well over QUIC, their analysis is mostly focused
on buffer-based ABR and does not look into various QoE
metrics as explored in the recent literature [4], [5]. In a
follow-up work [9], the authors have explored the QUIC
retransmissions to improve the buffer-based ABR over DASH.
In [10], the authors have used an emulated setup to analyze the
buffer-based ABR techniques over QUIC and also proposed a
QoE prediction mechanism for adaptive streaming over QUIC.
Also, these existing studies have indicated that QUIC might
not suit well for buffer-based ABR. They have not explored
the performance of advanced ABR techniques over QUIC. We
argue that there is a requirement to analyze the recent ABR
techniques like MPC [4] and Pensieve [5] over QUIC because
these recent studies have indicated that buffer-based techniques
are aggressive towards video-bitrate maximization whereas
suffers in terms of playback smoothness and rebuffering. To
the best of our knowledge, this is the first study that explores
the performance of advanced ABR techniques over QUIC as
the end-to-end transport protocol.

III. EXPERIMENTAL SETUP

For a fair comparison between the performance of DASH
over TCP and QUIC, we use an experimental test network as
shown in Fig. 1. We use a streaming server to keep all the
videos encoded at different video bitrates as mentioned later
and a web-based javascript DASH player provided by DASH
Industry Foundations (DASHIF)! to stream the videos at the
client side. To emulate realistic traffic behavior over the test
setup, we use a benchmark traffic shaper Mahimahi [11] and
have created Mahimahi compatible traces from two publicly
available datasets — (i) a broadband trace from FCC [12] and
(i1) the 3G/HSDPA mobile dataset collected in Norway [13].

: Traffic !

1 Shaper P :

' l .

S O

y ____ 4 1

: DASH Player 1

Streaming L, (klro_w§e_r)_ :
Server

Viewer Computer
Fig. 1. Experimental setup for video streaming using DASH

We run two servers with the different end-to-end data
transfer protocols, one for QUIC and another for TCP. For
QUIC server, we use the golang implementation of QUIC
— GO—-QUIC? (release version 12.0). We have also tested with
other QUIC implementations like LiteSpeed QUIC 3 and have
similar observations as reported in this paper. We give the
results corresponding to the GO-QUIC implementation as it
has been used by majority of the existing works in literature.
For TCP based server, we use the standard webfsd* web-
server (version 1.21). As only the Google Chrome and the
Chromium browsers support the QUIC protocol, we use the
Google Chrome browser of compatible version 68, for our
experiments to stream the videos at the client side over the
DASHIF streaming player.

In all the experiments, we use off-the-shelf applications
and run them in a non-root user mode. The streaming server
and the DASH players run over systems with 8§GB of RAM
and Intel(R) Core(TM) 15-4590 CPU @ 3.30GHz processor
running Ubuntu 16.04.6 LTS operating system on top of Linux
4.9.78. For DASH client, we modify dash.js v2.9.3 to add
support for advance ABR algorithms like Pensieve and MPC.

TABLE I
BITRATE AND RESOLUTION MAP OF DASHIFIED VIDEOS.
Bitrate(kbps) 200 400 600 800
Resolution 320x180 | 320x180 480x270 640x360
Bitrate(kbps) 1000 1500 2500 4000
Resolution 640x360 | 768x432 | 1024x576 | 1280x720

We use a total of 45 hours of videos (about 50 different
videos) which have been dashified (encoded in different

Ihttps://github.com/Dash-Industry-Forum/dash.js, (Last accessed: May 17,
2020)

Zhttps://github.com/lucas-clemente/quic-go (Last accessed: May 17, 2020)

3https://github.com/litespeedtech/Isquic (Last accessed: May 17, 2020)

“https://www.gsp.com/cgi-bin/man.cgi?section=1&topic=webfsd (Last
accessed: May 17, 2020)

bitrates as shown in Table I) using the ffmpeg tool in
eight different video quality levels and two different audio
quality levels. We play every videos for all the ABRs and
protocol combinations, resulting ~ 19 days of video playback
time. We also maintain the similar playback environment for
DASH/QUIC and DASH/TCP for each of the video and the
ABR combinations. We have compared the performance across
five different ABR mechanisms, namely, BOLA (B) [3], the
standard buffer-based quality adaptation of DASHIF (BB),
the two variants of model predictive control (MPC) driven
approaches [4] — MPC-Fast (MF) and MPC-Robust (MR)
and the deep learning driven quality adaptation algorithm
— Pensieve (P) [5]. To measure the overall QoE of the
video playback, we have used a combined metric of the
average quality level, the rebuffering time and the playback
smoothness, as used in [4], [5].

N N N-1
QoF = ZQ(RH)_”ZT"_ Z q(Rny1) —q(Rn)| (1)
n=1 n=1 n=1

Eq. (1) indicates the QoE metric to measure the overall QoE
of a video playback session. Here, N is the total number
of chunks for the playback video. R, and ¢(R,) are the
representation of the playback bitrate of the chunk n and
the quality perceived by a user for that chunk n. T, is the
rebuffering time for the chunk n. p is a QoE weight factor
[4]. We consider a linear representation ¢(R,) = R,,, similar
to [4], indicating that the playback quality increases linearly
with the increase of playback bitrate.

IV. RESULTS AND ANALYSIS

We first look into the overall playback video quality and
then dig into the details of individual QoE metrics. As the
data used for this analysis have been collected from realistic
experiments, we, therefore, avoid any underlying parametric
assumption while checking for the statistical significance
of the results. Subsequently, we apply Mann—Whitney U
test [14] with non-parametric assumptions on all the metrics
and report if the results are statistically significant or not
with the hypothesis that DASH/TCP works significantly better
than DASH/QUIC’. We also run a two-way test to check
the alternate hypothesis that DASH/QUIC works significantly
better than DASH/TCP.

A. Average Video Bitrate

The distributions of the average playback bitrate for the
five ABR mechanisms are shown in Fig. 2. For BOLA, we
observe that the average video bitrate for DASH/TCP is higher
than that of DASH/QUIC. It is known from the existing
literature that buffer-based ABR mechanisms aggressively use
the highest quality levels, which we also observe in Fig. 2.
However, we observe that DASH/TCP always performs better
than DASH/QUIC. Indeed, the state-of-the-art reinforcement
learning based ABR mechanism, Pensieve, provides much
better quality level on top of TCP in comparison to QUIC.

SWe use the notation “DASH/TCP” to indicate DASH over TCP; similarly
“DASH/QUIC” indicates DASH over QUIC.

TCP ——
QuicC ——

Average bitrate (mbps)
o
&

1_: o i-I-

1 ﬁ

08 B BB MF MR 3
Fig. 2. Average Playback Video

Quality for Different =~ ABR
Techniques (p < 0.05 for all the
metrics)

TCP ——
Quic ——

(mbps)

Average bitrate variation

s

MR P

— =

B BB

Fig. 3. Average Playback Quality
Variation for Different ABR
Techniques (p < 0.05 for all
the metrics except BOLA and

e
@

TCP ——
Quic ——

e
S

o
o

T

B BB MF MR P

Rebuf time (seconds)

)

Fig. 4. Rebuffering Time for
Different ABR Techniques (p <
0.05 for all the metrics except
Pensieve and MPC-Robust)

QoE
L T "IN

Fig. 5. Overall QoE for Different
ABR Techniques (p < 0.05 for all
the metrics except MPC-Robust)

MPC-Robust)

For all the five ABR methods, we observe that the p-value is
less than 0.05 for the Mann—Whitney U test, indicating that
DASH/TCP performs significantly better than DASH/QUIC in
terms of average playback quality.

B. Quality Level Fluctuation — Playback Smoothness

Next, we observe the average fluctuation in the playback
quality levels, which has been shown in Fig. 3. A fluctuation
in the quality level indicates less smoothness in the video
playback, and, therefore, reduces the QoE. We observe that
the differences in average quality level fluctuations between
DASH/TCP and DASH/QUIC for BOLA and MPC-Robust
are statistically insignificant. However, the figure indicates
that quality fluctuation with DASH/QUIC is significantly
more for buffer-based ABR, whereas less for MPC-Fast
and Pensieve-based ABR, with p-value less than 0.05. This
is an interesting observation as we see that the advanced
ABR techniques, such as MPC-Fast and Pensieve, provide
better playback smoothness with DASH/QUIC, although the
supported playback quality is lower compared to DASH/TCP.

C. Rebuffering Time

Fig. 4 indicates the rebuffering time for different ABR
techniques over DASH/TCP and DASH/QUIC. We observe
that rebuffering is significantly more with DASH/QUIC for
BOLA, buffer-based and MPC-Fast, whereas the differences
in rebuffering are statistically insignificant for MPC-Robust
and Pensieve. For the buffer-based ABR which aggressively
download the videos at the highest playback quality,
rebuffering is comparatively very high with DASH/QUIC.
MPC-Robust and Pensieve show minimal rebuffering, so
the differences between DASH/TCP and DASH/QUIC are
not statistically significant. We observe that the claim from
Google [1] that QUIC enables less rebuffering does not hold
for all the ABR techniques and is very much specific to which
ABR technique is adopted at the playback client.

D. Overall QoE

Finally, we look into the overall QoE computation as shown
in Eq. (1). The overall QoE measurements for all the ABR
techniques are shown in Fig. 5. In this experiment, we plot the
linear variants of ¢(R,,) as discussed in the previous section.
Our observations from these results are as follows. DASH/TCP
provides significantly better QoE compared to DASH/QUIC

for all the ABR algorithms except MPC-Robust where the
result is statistically insignificant. This indicates that the recent
advanced ABR techniques like MPC and Pensieve are more
compatible with TCP than QUIC. Indeed from representations
of ¢(R,), we can say that the above observations are generic
across a wide variation of QoE measurements.

V. LOOKING UNDER THE HOOD

Our thorough experiments over a wide range of ABR
techniques indicate that DASH/QUIC does not perform as well
as it is supposed to. To explore this further, we perform a set
of experiments to understand the issues with QUIC, which
affect DASH-based video streaming.

A. Does QUIC Perform Poorly in All Scenarios?

One immediate question that might arise in this context is
whether the observed performance drops are generic for QUIC,
or whether certain features of QUIC affect the performance of
DASH. With the similar network setup as discussed before, we
compute the overall throughput and the response latency for
TCP and QUIC over two different scenarios — (a) downloading
of large web-objects and (b) DASH video streaming.

1) Performance during HTTP Object Downloads: To see
how the performances of TCP and QUIC fare during the
download of HTTP web objects, we perform a set of
experiments over the same network setup with emulated
bandwidth control via Mahimahi traffic shaper. We download
HTTP web objects (HTML and data files) of predefined sizes
(from 2MB to 50MB) for 40 sequential HTTP requests in each
session. We give a pause of 500ms before requesting the next
web object. We repeat each session three times for both TCP
and QUIC.

100

238 105
24
2 95
16 920
85
80
TCP

1.2
Quic TCP Quic

Throughput (mbps)
Response latency (ms)

0.8
(a) Throughput (b) Response latency
Fig. 6. TCP and QUIC performance during HTTP web object download

Fig. 6a shows the distribution of throughput observed
against each web object downloads, while Fig. 6b indicates

the response latency observed by each HTTP request. The
throughput is computed as the object size divided by the
download time where the download time is the time difference
between the first and the last bytes received for that web object.
The response latency is computed as the time between the
initiation of the HTTP request and the time when the first
byte of the response is received. From the figures, we see that
the throughput is similar for HTTP/TCP and HTTP/QUIC.
The response latency for HTTP/QUIC is slightly lower than
HTTP/TCP. These experiments shows that QUIC performs
better than TCP in terms of response latency which is an
important QoE metric for web object downloads.

4 1600

1400
3
1 + +
—_—
TCP

1200
Quic TCP Quic
(a) Throughput

1000
800
600
400
200

Throughput (mbps)
N

Response latency (ms)

(b) Response latency

Fig. 7. TCP and QUIC performance during DASH video segment download

2) Performance during Video Streaming: Fig. 7a shows
the distribution of the throughput observed during the
video playback, combining the data from all the five ABR
mechanisms. A statistical test also indicates that the difference
between TCP and QUIC in terms of throughput is not
significant. Interestingly, the predicted throughput during
video streaming is one of the important metrics used by all
the ABR mechanisms for deciding the optimal bitrate. Fig. 7b
plots the distributions of the response latency, combining
the videos from all the five ABR mechanisms. We have
an interesting observation here — although the difference in
the median of the response latency for DASH/QUIC and
DASH/TCP is not significant, the upper quartile for the
response latency of DASH/QUIC is significantly higher than
the upper quartile of DASH/TCP. This indicates that with
QUIC, the response latency sometime becomes very high —
this observation is opposite to what we have observed in
Fig. 6b. It can be noted that the throughput computation does
not consider the response latency, rather it considers the time
difference between the first and the last bytes received for
a video segment. The ABR algorithms primarily select the
bitrate based on the computed throughput for the last few
video segments. If the computed throughput is high, the DASH
client requests for the next video segment in an increased
quality level. However, if the response latency is high, this
segment may take longer time to reach the client, resulting in
a rebuffering and subsequent drop in the quality levels for the
next video segments. We do not see this problem for TCP, as
the response latency correlates with the computed throughput;
however, this correlation does not hold for QUIC. Next, we
dig further to find out the reason behind the high response
latency observed during the video streaming using QUIC.

B. Exploring TCP and QUIC Connections during a Video
Streaming

During the dashification of a video with an embedded audio,
the standard practice is to first segregate and segment the video
data and the corresponding audio data, and then encode the
video and the audio segments separately in their respective
available encoding formats. Now the DASH client creates two
different HTTP streams for downloading the video segments
and the corresponding audio segments. For DASH/TCP, two
different TCP sockets are created between the DASH client
and the server for these two HTTP streams, whereas for
DASH/QUIC, both the HTTP streams are multiplexed, and
the HTTP messages are exchanged over a single UDP socket.
This brings the next question — how do TCP and QUIC fare for
two parallel but interdependent application streams between
the same client and the server? To answer this question,
we do the next experiment over the same network setup as
discussed before. In this experiment, we create two HTTP
streams where both the streams request for the HTTP objects
(files) in parallel. The object sizes are varied from 1MB to
8MB. We also vary the duration between two HTTP requests
(called the pause time) from 500ms to 8000ms.

TCP mmmm QUIC mmmm

FRET

0 0
500 1000 2000 4000 8000 500

Inter request time (ms)
(a) Throughput (b)
the instances)

10000 | TCP mmmm QUIC mmmm

8000

N

6000
4000

2000

Response latency (ms)

Throughput (mbps)

1000 2000 4000 8000
Inter request time (ms)

Fig. 8. Performance of TCP and QUIC for two parallel connections

Fig. 8 shows the observations from this experiment. The
differences in throughput between QUIC and TCP is not
significant; however, the response latency with QUIC is
significantly higher than TCP when two parallel application
streams generate HTTP requests. Further, this difference in
the response latency is more prominent when the pause time
is less indicating the frequency of the HTTP requests is high.
This observation is very synonymous to what we observed
in Fig. 7. To find out the reason for such a behavior, we
see that the problem is inherited from the behavior of the
socket buffers used to interface between the user-space and the
kernel-space. As TCP creates two separate sockets for the two
HTTP streams, each of the sockets maintains its own socket
buffer. Therefore, the HTTP responses from the two streams
do not interfere with each other. On the other hand, QUIC
multiplexes both the streams and uses a single UDP socket
having a single socket buffer. Therefore, the HTTP responses
from both the streams interfere, and higher response rate at
one stream affects the queuing delay for the response at the
other stream.

When DASH uses two separate HTTP streams for video
and audio downloads, the stream corresponding to the video
downloads has a higher data generation rate compared to
the stream corresponding to the audio download. This is

Response latency (p < 0.05 for all

because the amount of video data to be downloaded is much
higher compared to the amount of the audio data to be
downloaded, for a fixed playback time. For DASH/TCP, the
audio and the video streams use separate socket buffers, having
independent queuing delay depending on their data generation
rate. However, for QUIC, both the streams get multiplexed.
For every playback segment, the client generates one HTTP
request for the video segment and another HTTP request for
the audio segment. As the video segment request is sent first,
the UDP socket buffer gets filled up with the majority of
the video segment data. Consequently, the data for the audio
segment needs to wait until that video data gets freed up
from the socket buffer. Fig. 9a shows an example instance of
video download using QUIC, where we see that video data
is served almost immediately after the request is received
at the server. However, the audio data has to wait in the
queue (the red timeline) before it gets served. This problem is
not there in TCP as the fairness property of TCP flow and
congestion control serves both the socket buffers in a fair
way. So, the audio data does not experience this high response
latency. Fig. 9b shows the distributions of the response latency
for the audio and video streams separately. We see that the
distributions of the response latency for the video streams are
similar for QUIC and TCP. However, the audio streams at
QUIC experiences a much higher latency compared to TCP.

)

386 [Waiting’ [—] g soee TCP mmmm QUIC memm 120 §
wdio I 3 2

5 : I—
§ 357 Video mmm 3 so00 3
£ 384 — @ 4000 7
5 £ €
2 383 — £ E
- > 3000 S
% 382 — 2 g
3 3 — £ 2000 £
T 350 | N 2 1000 2
379 | E— § §
2 2
g @
] 3
o o

1460 1465 1470 1475 1480 1485 1490
Time (seconds)

(a) Video/Audio downloads over
QUIC

Audio Video

(b) Response latency for audio and
video

Fig. 9. TCP and QUIC response latency during video and audio downloads
over separate streams

C. Summary

We observe that during parallel downloads of audio and
video streams, QUIC multiplexing affects the response latency
of the audio streams. This observation also tallies with the
observation made in [15] which states that multiplexing
objects from parallel streams affect the latency of individual
objects. This latency is inevitable because of multiplexing
multiple objects over a single UDP queue, whereas the
final video playback depends on successful download of
both the video and the audio segments. Interestingly, the
throughput calculation used in DASH does not consider this
response latency, resulting in a mismatch between the expected
throughput and the actual download time of the segments
after a request is sent. There might not be a direct solution
to this problem as DASH is unaware about such behaviors
of the underlying data transmission protocol, whereas QUIC
is unaware about the dependency between the audio and the
video streams for successful streaming of the video. A further
analysis and protocol enhancement is required in this space
for making ABRs work perfectly on top of QUIC.

VI. CONCLUSION

This letter gives an analysis of the recent advanced ABR
techniques over the QUIC as the end-to-end transport protocol.
We observed that all the ABR techniques are sensitive to
sudden increase or drop in the client-perceived link bandwidth,
and therefore are more compatible with TCP rather than QUIC.
The QUIC multiplexing of audio and video streams over a
single UDP socket results in additional response latency for the
audio segments, which are not captured during the calculation
of channel throughput. As a consequence, the ABR algorithms
take incorrect decisions during selecting the bitrates based
on the calculated throughput over a QUIC connection. The
analysis discussed in this letter opens up a new direction of
research on exploring ABR techniques over QUIC which is
the de-factor transport protocol for Google services.

REFERENCES

] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The QUIC transport
protocol: Design and internet-scale deployment,” in Proceedings of the
ACM SIGCOMM. ACM, 2017, pp. 183-196.

[2] T. Stockhammer, “Dynamic adaptive streaming over HTTP-: standards
and design principles,” in Proceedings of the ACM MMSys. ACM,
2011, pp. 133-144.

[3] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptation for online videos,” in Proceedings of the 35th Annual
IEEE ICC, apr 2016, pp. 1-9.

[4] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in ACM
SIGCOMM Computer Communication Review, vol. 45, no. 4. ACM,
2015, pp. 325-338.

[5] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with Pensieve,” in Proceedings of the ACM SIGCOMM.
ACM, 2017, pp. 197-210.

[6] P. Biswal and O. Gnawali, “Does QUIC make the web faster?”
Proceedings of the 2016 IEEE Globecom, 2017.

[7]1 P. Megyesi, Z. Krimer, and S. Molndr, “How quick is QUIC?” in
Proceedings of the 2016 IEEE ICC. IEEE, 2016, pp. 1-6.

[8] D. Bhat, A. Rizk, and M. Zink, “Not so QUIC: A performance study of
DASH over QUIC,” in Proceedings of the 27th ACM NOSSDAV, 2017,
pp. 13-18.

[9]1 D. Bhat, R. Deshmukh, and M. Zink, “Improving QoE of ABR streaming

sessions through QUIC retransmissions,” in Proceedings of the 2018

ACM MM, 2018, pp. 1616-1624.

T. Van, H. A. Tran, S. Souihi, and A. Mellouk, “Empirical study for

dynamic adaptive video streaming service based on google transport

QUIC protocol,” in Proceedings of the 43rd IEEE LCN, 2018, pp. 343—

350.

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,

and H. Balakrishnan, “Mahimahi: Accurate record-and-replay for

HTTP,” in Proceedings of the USENIX ATC, 2015, pp. 417-429.

[12] F. C. Commission, “Raw Data - Measuring Broadband

America - Eighth Report,” https://www.fcc.gov/

reports-research/reports/measuring-broadband-america/

raw-data-measuring-broadband-america-eighth, 2018, [Online; accessed
29-March-2019].

H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute

path bandwidth traces from 3G networks: Analysis and applications,”

in Proceedings of the ACM MMSys, 2013, pp. 114-118.

N. Nachar et al., “The Mann-Whitney U: A test for assessing whether

two independent samples come from the same distribution,” TOMP, pp.

13-20, 2008.

A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and A. Mislove,

“Taking a long look at QUIC: an approach for rigorous evaluation

of rapidly evolving transport protocols,” Communications of the ACM,

vol. 62, no. 7, pp. 86-94, 2019.

—

[

(10]

[11]

[13]

[14]

[15]

