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A Typical Scenario
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. Pretext

e Online video streaming - most popular mode of entertainment
* Online mobile video traffic - 71% in total mobile traffic volume
» Video experience over mobile Internet negatively affected by
* Poor mobile connection quality
 Fall back to legacy networks
» Excessive Battery Drainage - increases under mobility
* Incessant network scanning
 Handovers

Our proposed solution: EnDASH - A mobility adapted
energy efficient video streaming algorithm for cellular
networks ;




UE Energy Consumption Model - 4G LTE

* Understanding the energy/power consumption model and RRC state machine of 4G LTE

* Radio Resource Control (RRC) — Radio Resources are time-frequency resources in LTE
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Fig: RRC state machine of 4G LTE!

Fig: Measured Power data for
downloading a 1Mb file

1. Junxian Huang, Feng Qian, Alexandre Gerber, Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. A close examination of performance and
power characteristics of 4G LTE networks. In Proc MobiSys '12 ACM, New York, NY, USA, 225-238.
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Pilot Study

Our Goal : Energy optimization at end devices based on Intelligent Traffic
Scheduling

1. Profiling the end user device energy consumption as a function of fluctuations
in the network conditions

2. Understanding the correlation between traffic generation pattern and energy
consumption

PILOT STUDY: Extensive throughput and energy measurements based carried out
e In different mobility conditions - Stationary, slow-moving electric vehicle, cars in the highway,
cities,

e [n different geographic locations - Kharagpur, Kolkata, Guwahati, Bangalore, Malda




Experimental Set-up

* Equipment Used:
* Monsoon Solutions Power Monitors
e Smartphones - Moto G5, Micromax Canvas
Infinity
e Service Providers - Airtel, JIO, Vodafone

* Software Set-up:

» Network data collected - NetMonitor Lite app
GPS location and Speed - GPS logger
File download throughput - tcpdump
HTTP client-server program set up using
smartphone and Amazon Web server
Video Streaming Apps - YouTube, Netflix,

A total of 39662 seconds of valid data
point, collected over a period of 11 Amazon Prime, SonyLiv
months



Observations
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Fig: Trajectory of Moto G5 connected to
Airtel inside II'T Kharagpur campus.
Networks : 4G, HDPA, UMTS, EDGE.
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lakeaway 1: The wireless network condition is best quantified by throughput which depends

significantly on phenomena such as handovers and not on received signal quality alone. 7




Observations
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Fig: Total time
spent in each
RSSI bin and

the active time

1n each bin

Fig: Packet trace of a 360p Youtube video
download with the temporal variation in
the RSSI during the download
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lakeaway 2: The current protocol of video download attributes higher weightage to the

playback-buffer length than the user's instantaneous received signal strength or throughput. 3




EnDASH - To improve energy efficiency

e Fetching data during good channel conditions can reduce total download time

e Reduced dwell time in CONNECTED RRC state - less power consumed.



DASH - Bitrate Adaptation

Request:
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EnDASH - To improve energy efficiency

e Fetching data during good channel conditions can reduce total download time
e Reduced dwell time in CONNECTED RRC state - less power consumed.

To be achieved through the following:
e Tuning buffer length to the perceived throughput
o Advantage: Allows downloading higher volume of video chunks during good
channel conditions while in motion
e Adapting the bitrate to the perceived throughput
o Advantage: Unhindered Quality of Experience (QoE)

USP of EnDASH: accounts for vertical handovers or connection to

different network technologies.
11



How EnDASH works?

1200
A
& [1000 /;(
S t t t

1 2
~ | 300 n
g
= | 600
=
2] 400
)
= | 200 @
b
El o O N N
(g -r uw ~ E‘
1

@ P Time
@Predict average throughput at time slot n+/, T(n + 1) = F(t(n))
@Predict play-out buffer length at time slot n+7, b(n + 1) = F(£(n + 1))

@Predict Next Chunk Quality as a function of b(n + 1) 12



The EnDASH flow
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Throughput Prediction Algorithm

A supervised learning algorithm - Random Forest Learning

* Two phases: Training and Test

 Train-Test split: 70-30
Historical information of previous ‘x’ seconds of various radio related parameters used to
predict the average throughput experienced by a user in the next T seconds.

* Represented as P F .

Data Processing:
* Each parameter a random quantity;
 Instead of feeding entire data statistically important metrics fed
« Derive quantities like Mean, median, 25%, 75", 90" percentiles

Random Forest Regressor: 100 Estimators

Features: RSSI, Network Type, Base Station Id, Number and Type of neighbouring BSs
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Throughput Prediction - Results

Dataset

Kharagpur
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Buffer Length Selection RL Model

Agent

State s;

Current Available Buffer

Predicted Throughput| b,
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Bitrate Selection RL Model
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Evaluation Methodology

Trace Driven Evaluation: For Throughput Prediction

* Dataset: Dataset consisting of 148 traces on throughput and power consumption

* Duration: Trace length varies between 34 seconds to 3298 seconds

* Formatting: Formatted to be compatible with MahiMahi Network Emulation Tool

Training the buffer length and bitrate selection models
* 57 DASH-ified videos used, with a total duration of 45 hours

Throughput Prediction
e Historical Window Size — 30 seconds
e Future Window Size — 30 seconds

How Does EnDASH Perform?
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Evaluation Methodology

Rate-based: pick bitrate based on predicted throughput
FESTIVE [CoNEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’16]

Buffer-based: pick bitrate based on buffer occupancy
BBA [SIGCOMM’14], BOLA [INFOCOM’16]

Hybrid: use both throughput prediction & buffer occupancy
PBA [HotMobile’15]

QoE-metric based: optimization problem to maximize QoE metric
MPC [SIGCOMM’15], Pensieve [SIGCOMM’17]

The Baseline Algorithms used in the work highlighted.
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Energy Consumption and QoE
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Fig: Performance comparison of EnDASH with baseline ABR streaming algorithms, BOLA [11], Pensieve [10], Fast
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Individual QoE components
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Results
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Look-Ahead

- What we have:

- An energy efficient mobility adapted video streaming algorithm -
EnDASH

- Saves energy with some compromise in QOE and also in memory
usage in terms of increased buffer length.

- Offers nearly 29% increase in video viewing time
- Look Ahead
- Work in progress for app development

- Implementation of EnDASH for base-station assisted energy
management in smartphones
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Thank you
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Impact of features on throughput prediction
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