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ABSTRACT
Live video broadcasts to particular communities or targeted audi-
ences many-at-a-times indulge a cluster of localities from where
the end-users are interested in participating. In this paper, we lever-
age this idea to develop a system called Federated Live Streaming
over DASH (FLiDASH) which forms end-users coalitions based on
the locality of the network connectivity (like a set of end-users
behind a common core-network service gateway). In FLiDASH,
the coalition members stream the live data collectively based on a
federated adaptive bitrate streaming mechanism where the coali-
tion as a whole decides the optimal bitrate for video streaming and
distributes the download overhead among its members. We have
thoroughly evaluated FLiDASH in an emulated setup, and observe
a 40% improvement in the live streaming QoE with a 20% reduction
in the network traffic usage.

CCS CONCEPTS
• Networks → Network design principles; Peer-to-peer net-

works; • Information systems → Multimedia streaming.
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1 INTRODUCTION
During the last decade, social video streaming for targeted audi-
ences have seen a huge boom with applications like Twitch.tv,
Periscope, Meerkat along with the traditional YouTube & Facebook
live and similar other personalized live streaming services [19].
Live broadcasts over such platforms have increased many-folds
during the recent COVID-19 pandemic due to over-the-top (OTT)
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services like online live broadcast of classroom lectures to the stu-
dents1. Many existing studies indicate that live streaming of popular
events, such as a live cricket or football match, creates multiple traf-
fic bottlenecks in the network, particularly at the Internet gateways
of private organizational networks or Internet Service Providers
(ISP) [21]. Consequently, a question arises – how can we prevent
traffic bottlenecks in the Internet while allowing high definition
video streaming to millions of users?

In this paper, we consider a class of live but non-interactive
streaming applications, where the video is broadcast to a set of tar-
geted audiences over social streaming applications. Social streaming
applications many-a-times form communities which are localized,
forming one or more geographical clusters [19]. We utilize this
localized community formations among live streaming viewers to
construct one or more playback coalitions, as shown in Figure 1.
The coalition members share a common network gateway (such as
an organizational local network gateway or the service gateway
for a cellular core network) to connect to the Internet, however,
there are direct high-speed local connections among the coalition
members (like LAN connections or cellular device-to-device con-
nections). It can be noted that such a coalition can be formed based
on the principles of Application-Layer Traffic Optimization (ALTO),
where an ALTO server can provide the locality information of video
players without requiring any explicit network or device firmware
change. The coalition members collectively download the video
from the content provider based on an adaptive bitrate streaming
(ABR) strategy, such as dynamic adaptive streaming over HTTP
(DASH). The clients in a coalition collectively decide the adaptive
playback rate and share data-download loads among themselves
maintaining the playback synchronization.
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Figure 1: Overview of FLiDASH: The clients under a local
network create a coalition, every members of the coalition
share the total download load.

1https://www.nokia.com/blog/network-traffic-insights-time-covid-19-march-23-29-
update/ (Accessed: March 25, 2021)

https://doi.org/10.1145/3405672.3405806
https://doi.org/10.1145/3405672.3405806
https://doi.org/10.1145/3405672.3405806
https://www.nokia.com/blog/network-traffic-insights-time-covid-19-march-23-29-update/
https://www.nokia.com/blog/network-traffic-insights-time-covid-19-march-23-29-update/


AU
TH

OR
S’
CO

PY

NAI’20, August 14, 2020, Virtual Event, NY, USA Abhijit Mondal and Sandip Chakraborty

Challenges: However, developing such a system has multiple
challenges. First, the coalition needs to be designed in a way such
that downloading data directly from the content provider is costlier
than sharing the data over the local network. Second, there should
be a proper distribution of segment-wise data-download scheduling
among the coalition members such that playback synchronization
is not violated. A proper playback synchronization ensures that
every player in the coalition should acquire the video segment 𝑠𝑖 ,
either downloaded by itself or fetched from another coalition player
through the direct local link, by the time it completes playing the
previous video segment 𝑠𝑖−1; otherwise, theremight be a rebuffering
delay affecting the quality of experience (QoE). Third, the Internet
bandwidth of individual players may vary over time; therefore, the
coalition as a whole should schedule the video segment downloads
among its members as well as decide the bitrate of every video
segment based on the ABR principle.

Contributions: Owing to the above challenges, we develop a
coalition-based adaptive live streaming called Federated Live Stream-
ing over DASH (FLiDASH) where the streaming clients or players
form a dynamic coalition based on the network quality parameters
and collectively stream a live video. We use the playback buffer
statistics at individual streaming clients to develop a distributed
mechanism for coalition formation with the help from a proximity
server (which can be an ALTO server). The members of a coalition
use a low-overhead gossip-based protocol for playback synchro-
nization and takes following two decisions – (1) scheduling the
downloads of video segments among the coalition members based
on their individual instantaneous network condition and the overall
fairness criteria, and (2) bitrate of each video segments to optimize
the overall QoE of the coalition. We use the following QoE objec-
tives while making the above decisions – (a) improve the overall
video quality level, (b) improve the playback smoothness by reduc-
ing the quality fluctuations, (c) reduce rebuffering, and (d) improve
fairness among the coalition members in terms of the downloaded
data share. We have implemented FLiDASH over an emulated en-
vironment and have thoroughly compared its performance with
various other baselines. We observe that FLiDASH improves the
overall QoE with less traffic overhead at the backbone network.

2 RELATEDWORK
There are few works in the literature like DASH over Information
Centric Networking (ICN) [9] and Multicast ABR [1], which use
adaptive bitrate in a collaborative setup. All the segments of a
DASH video contain a unique name through the URL. ICN provides
a way to get the contents based on a name, and thus the DASH
video segments can be routed according to the name. In case of
a ICN, if the video players are behind a common ICN gateway,
the gateway can cache the DASH video segments based on the
unique name, and thus, can reduce duplicate delivery of contents.
However, ICN needs significant changes in the network architecture
including its routing policies, and thus, is not readily deployable on
the existing networks. In 2016, Cablelabs introduced multicast ABR
(M-ABR) [1] to provide the same video content to a large group of
viewers while ensuring low network overhead via IP multicast. In
M-ABR, all the ISPs maintain an M-ABR device that gets connected
to the original video server. The M-ABR device receives the data

from the video content server and then uses IP multicast to forward
the content to the end-users. However, in this architecture, the
content provider needs to push a middlebox (M-ABR server) to
the ISP. Further, there needs to be a software change at the client
devices. There exist few works in the literature to take care of the
ABR selection over a collaborative setup, however, in these systems,
the video players need to coordinate with an Internet middlebox
that works as a central controller, such as a tracker [4], a software
controller [7] or the cloud [15, 20]. This limits the scalability as all
the video players need to coordinate with the controller for each
ABR decisions which are taken for every video segment requests.
In contrast to such existing approaches, FLiDASH works without
the support from any such Internet middleboxes.

3 SYSTEM ARCHITECTURE
FLiDASH has three components as shown in Figure 2.
(1) Streaming Server: The streaming server is a content delivery
network (CDN) server which encodes the live videos and hosts
the video segments. We consider a scenario of a slightly delayed
broadcast of the live streaming contents [5], where a playout delay
(in the order of a few seconds) is introduced between the content
recording and the content broadcast, within which the content
server can process the recorded video segments to encode them
in multiple DASH-supported bitrates. As a consequence, at any
instance of time, a few number of DASH-encoded video segments
are available at the content server for downloading them in parallel.
It can be noted that such a playout delay is common in many
commercial live streaming systems [23].
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Figure 2: Architectural Components for FLiDASH

(2) Proximity Server: It keeps the locality information about the
video players who stream the same live video content. A streaming
server or a player can act as the Proximity server. However, if the
network have an ALTO service, the coalition formation becomes
easier [2]. ALTO mainly provides two basic pieces of information
– a cost map and a network map. These two pieces of informa-
tion help the player to understand the distance and delay from
another player. Without the ALTO service, FLiDASH players have
to ping or traceroute to understand the distance and delay, which
is comparatively more expensive.
(3) Player: A video player renders the video at the end-user side as
well as creates and maintains the coalition. Each player consists of
three modules – i) Playback, ii) Environment, and iii) Adaptive Bit
Rate (ABR). A Playback module keeps track of the playback buffer
and the playback time. The Environment module forms a coalition
with the nearby players and shares segments among other players in
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the coalition, following a distributed policy enforcement principle.
Every time it receives a segment, the playback module asks the
ABR module for the next quality level and the sleep-time before
it can start downloading. The sleep-time dictates the frequency of
attempting a direct download from the CDN.

3.1 Streaming Coalition Formation
To form a coalition, FLiDASH first uses the expected playback qual-
ity for a player based on its view-port size and resolution (for exam-
ple, playing a video on a laptop requires higher quality level than
playing it over a smartphone, to ensure similar QoE for the user),
along with the average network bandwidth. To estimate the average
network bandwidth, a player 𝑃𝑖 waits for some time to download
T number of video segments directly from the streaming server
with a server-client based ABR algorithm [11, 18, 22] and measures
the throughput 𝜏𝑖 based on the amount of data downloaded. Let
Q𝐺 and Q𝑃𝑖 be the average playback quality of a coalition 𝐺𝑝 and
a player 𝑃𝑖 . The player 𝑃𝑖 tries to find a coalition 𝐺𝑝 in the vicinity
(based on the information received from the Proximity Server) such
that (a) 𝑃𝑖 is within the same network of the existing players in 𝐺𝑝

(all the players are behind a common core network gateway), (b)
Q𝐺 ≈ Q𝑃𝑖 , (c) ∀𝑃𝑘 ∈𝐺𝑝

𝑑𝑒𝑙𝑎𝑦 (𝑃𝑖 , 𝑃𝑘 ) < 𝑡𝑑 (using the cost map and
network map from the ALTO server) where 𝑡𝑑 is a threshold on
the permissible delay between two coalition members2, and (d) the
current playback time of the player 𝑃𝑖 has a maximum one segment
delay from the current playback time of the coalition (this condition
ensures playback synchronization during coalition formation). If
no such coalition exists in the vicinity, the player continues as a
standalone player until another player joins to form a coalition.

3.2 Segment Download and Distribution
The Internet bandwidth between a player and the content server
may change over time, and this change may be different for differ-
ent FLiDASH players. Therefore, the coalition needs to take two
collective decisions – (i) which player would download the next
video segment, and (ii) what would be the download quality of the
next video segment depending on the collective QoE of the coali-
tion. FLiDASH selects an owner for every video segment 𝑠𝑖 (O𝑠𝑖 ),
which download the video segment, as well as takes two decisions
– (a) the bitrate of the downloaded video segment 𝑠𝑖 , and (b) the
owner of the next video segment 𝑠𝑖+1 (O𝑠𝑖+1 ). Once O𝑠𝑖 elects O𝑠𝑖+1 ,
this information is broadcast among the coalition members through
gossip protocol. The details follow.

3.2.1 Owner Selection for the Next Segment. In FLiDASH, the owner
of each segment is selected based on the following objectives – (i)
maximize parallel downloads of video segments from the content
server, (ii) max-min fair download load allocation among the coali-
tion members, (iii) maximize the playback bitrate of the coalition,
(iv) maintain playback synchronization among coalition members.

As we mentioned earlier that the playout delay at the content
server ensures the availability of a few number of video segments en-
coded in different supported bitrates, the coalition members down-
load them in parallel. The owner selection mechanism distributes

2In all of our experiments, we used 𝑡𝑑 =8 ms, which has been decided empirically
based on the impact of this parameter on the performance of the system.

the segments among the coalition members based on their instanta-
neous Internet bandwidth. For example, if a player 𝑃1 has twice the
Internet bandwidth than another player 𝑃2, then player 𝑃2 should
download one video segment from the CDN, while the player 𝑃2
should download two video segments of the same quality level
within the same instance of time. Therefore, a total of three video
segments can be downloaded collectively by the two players in
parallel; they can share the remaining segments with each other
for the video playback.

Based on the above principal, O𝑠𝑖 uses Eq. (1) to find O𝑠𝑖+1 . Here,
I𝑥 is the duration (idle time) from the last download for O𝑠𝑥 . D𝑞𝑥
and D𝑙𝑥 are the download queue length (i.e. number of pending
segments to be download) at O𝑠𝑥 and the download status3 of the
ongoing download, respectively. I𝑚𝑎𝑥 and D𝑞𝑚𝑎𝑥 are maximum
possible idle time (which is 𝑔𝑟𝑜𝑢𝑝𝑠𝑖𝑧𝑒 × 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) and
maximum possible download queue length (same as play buffer
length in term of number of segments).

O𝑠𝑥 = argmax
𝑥 ∈𝐺𝑝

(I𝑥/I𝑚𝑎𝑥 − D𝑞𝑥/D𝑞𝑚𝑎𝑥 − D𝑙𝑥 −M𝑥 ) (1)

Eq. (1) selects O𝑠𝑥 who is idle for the longest time (by looking at
the I𝑥 ) among all the players in the coalition. In case all the players
are busy downloading video segments, the equation considers the
download load (D𝑞𝑥 and D𝑙𝑥 ) on every player. To make sure that
the furthest segment should be allocated to the slowest player
(which is important for playback synchronization), we calculate the
deadlinemiss penaltyM𝑥 . Every direct download from the CDN
server is associated with a deadline.M𝑥 is a function that returns
zero if the deadline has not been missed by player 𝑥 during the last
download operation; otherwise, it calculates a penalty based on the
deadline miss duration and the current time. So, the player with
the lowest load and the highest bandwidth is selected as the owner
of the next segment.

Forceful self-download: FLiDASH expects that corresponding
owners would be able to download the segment before its playback
time; otherwise, the coalition players may experience a stall time
to rebuffer the video, which severely degrades their QoE. However,
we cannot avoid this situation completely as the bitrate selection
decision is based on the observation of the historical throughput
and the instantaneous measure of the available bandwidth; whereas
the owner may experience a sudden bandwidth drop during the
actual download of the target segment. To avoid this situation, we
put a deadline for each segment. If a owner fails to download the
segment before the deadline (other players in the coalition fail to
fetch the segment from the download buffer of the owner), other
players in the coalition who are free at that time (within the sleep-
time duration) trigger a forceful self-download of the segment
at a low quality, to avoid rebuffering due to a loss in playback
synchronization.

3.2.2 Bitrate Selection. FLiDASH uses a dynamic tuning approach
for bitrate selection based on collective influence of the coalition
members. To select the bitrate for segment 𝑠𝑖 , we use Algorithm 1.
This algorithm executes just before a player starts downloading a
segment. In the algorithm,𝛩 is the measured throughput share of

3If the segment length is𝑚 bytes, and 𝑛 bytes has been downloaded as of now, them
D𝑙𝑥 = 𝑚−𝑛

𝑚
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Algorithm 1: findCurrentQuality()
1 if 𝑑𝑡 ≤ 0 then
2 𝑚∗𝑛 = 0
3 Return

4 𝑚∗𝑛 ←𝑚∗
𝑛−1

5 𝛩 ← min(𝛩𝑤 ,𝛩𝑙𝑎𝑠𝑡 ,𝛩ℎ)
6 𝑚′ ← argmin

𝑚∈Q
{
���𝑑𝑡 − 𝐶𝑙𝑛,𝑚

𝛩

���}
7 if𝑚′ >𝑚∗𝑛 then
8 if𝑚∗

𝑛−1 =𝑚∗
𝑛−2 and𝑚∗

𝑛−2 =𝑚∗
𝑛−3 then

9 𝑚∗𝑛 ←𝑚∗
𝑛−1 + 1

10 else

11 𝑚∗𝑛 = ⌈𝑚
′+𝑚∗𝑛
2 ⌉

the current player in comparison to the total bandwidth available
for the coalition. The measured throughput has three components
– the weighted throughput (𝛩𝑤 ) which changes its value slowly
over the time, 𝛩𝑙𝑎𝑠𝑡 which is the throughput measured during
the last finished download by the current player, and 𝛩ℎ is the
harmonic mean of the throughput observed till now. The weighted
throughput𝛩𝑤 is measured as𝛩𝑤𝑖

= 0.8 ×𝛩𝑤𝑖−1 + 0.2 ×𝛩𝑙𝑎𝑠𝑡 . We
use𝛩 as the minimum of𝛩𝑤 ,𝛩𝑙𝑎𝑠𝑡 , and𝛩ℎ , because it is the worst
throughput the player observed till now. As we use 𝛩 to predict
the time require to download a segment, it gives us a worst time
bound. 𝑑𝑡 is the time left to download the segment 𝑠𝑖 so that no
player in the coalition stalls. 𝐶𝑙𝑖, 𝑗 is the content length of the 𝑖𝑡ℎ
segment at the quality level 𝑗 .𝑚∗

𝑖
is the selected quality level for

the 𝑖𝑡ℎ segment. Algorithm 1 allows the coalition to increase the
video quality when there is a steady network. So, we do not put any
restriction in the upper limit of the bitrate even though it involves
slight risk of additional stalls and bitrate fluctuations. We analyze
the individual QoE parameters in the evaluation, as discussed in
the next section.

4 EVALUATION
We compare FLiDASH performance with following baselines –
BOLA [18], MPC [22], Pensieve [11] which are client-server based
ABR streaming mechanism, and a distributed hash table (DHT)
based peer-assisted live streaming system [17]. We do not compare
the performance of FLiDASH with the performance of middlebox-
based adaptive live streaming platforms, such as [4, 7, 15, 20], as
the architectures of the two environments are completely differ-
ent. [17] uses a distributed architecture for overlay formation and
streaming data scheduling, so it is close to our proposed archi-
tecture. The source code of the implementation is available at
https://github.com/abhimp/FLiDASH (accessed: March 25, 2021).

4.1 Emulation Environment
We have developed an emulation platform similar to Pensieve em-
ulator [11] to analyze the performance of FLiDASH, however, ex-
tending it for multi-player environment as discussed next. In the
emulation platform, all the players in the system have access to
the system clock, which is an event-driven clock handled by the
emulator core. The emulator uses a reference network to define the
connectivity across the networked nodes; where every node of the
network runs a streaming player. The reference network provides
the network map only. For our experiments, we assume that the

inter-node link capacity is 100mbps, and the latency varies from
4ms to 64ms.Wemaintain a global playback time defined by the live
streaming server, and the streaming server generates DASH seg-
ments of a live video based on the global playback time, maintaining
the video frame recording timestamps. We use Mahimahi [14] net-
work traces to emulate the network condition of the links between
the streaming server and the players, where we randomly assign
different Mahimahi traces to every player in a network. The em-
ulated player can use any existing ABR implementation without
any modification as long as it takes the player-state as the input
and gives the next segment quality as the output. In the emulated
environment, we use Eq. (2) to compute the transmission time 𝑇𝑖 𝑗
between two players 𝑃𝑖 and 𝑃 𝑗 in a coalition. Here 𝑐𝑙𝑒𝑛 is the data
length of the video segment, 𝑑𝑖 𝑗 is delay between the two nodes,
𝑏𝑢𝑓 is the sender buffer and 𝑧 is the noise factor which is uniformly
distributed between 𝜃1 to 𝜃2. In our implementation, we consider
the value of 𝜃1 and 𝜃2 as 0.95 and 1.05, respectively.

𝑇𝑖 𝑗 = 𝑐𝑙𝑒𝑛 × 𝑏𝑢𝑓

2 × 𝑑𝑖 𝑗
× 𝑧 𝜃1 <= 𝑧 <= 𝜃2 (2)

4.2 Experimental Setup
We run our emulation with a broad set of autonomous system
data available from SNAP database [10] as reference networks. We
have executed the systems over 710 reference networks, with 100
to 1000 nodes per network. The link-speed for every node is set
based on the Mahimahi network traces. As mentioned earlier, every
node runs a streaming client. To train the model for learning based
adaptive streaming like Pensieve [11], we use 58 DASH-encoded
videos with a total duration of 45 hours. We have created Mahimahi
compatible traces from the following publicly available dataset – a
broadband trace from FCC [3] and the 3G/HSDPA mobile dataset
collected in Norway [16]. We modified these datasets as described
in [11] to make it Mahimahi compatible.

For experimentation, we use the QoE definition as given in [11].
According to this definition, we consider three QoE components
– (i) average quality level, (ii) average jump in the quality level
(smoothness of the video playback) and (iii) re-buffering time (stall
time). Let Q𝑛 denote the quality level for video segment 𝑛 and
T𝑛 be the re-buffering time. Considering that there are 𝑁 number
of segments in a reference video, the average QoE is defined as
follows. Here, 𝛼 , 𝛽 and𝛾 are weight factors, whose values have been
considered as 1, 1 and 4.3, respectively, similar to Pensieve [11].

𝑄𝑜𝐸 =
𝛼

𝑁

𝑁∑︁
𝑛=1
F(Q𝑛 ) −

𝛽

𝑁 − 1

𝑁∑︁
𝑛=2
|F (Q𝑛 ) − F(Q𝑛−1) | −

𝛾

𝑁

𝑁∑︁
𝑛=1
T𝑛 (3)

4.3 QoE Analysis
We first observe the individual QoE components for FLiDASH in
comparison with other baselines. Figure 3a compares the average
playback bitrate for various streaming applications. In Figure 3b,
we show the variation in average playback bitrates, which indicate
the lack of smoothness of the video rendering. We observe that
the performance of BOLA in terms of average playback bitrate is
very low; BOLA is very conservative about the bitrate, whereas
it is much concerned about the re-buffering time. Pensieve and
MPC improve the video quality compared to BOLA by utilizing
a learning-based approach. DHT uses the knowledge of existing

https://github.com/abhimp/FLiDASH
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players in the network and forms a peer-to-peer architecture for
collectively download the videos. So, it improves the average video
quality compared to client-server based ABR. However, FLiDASH
clusters the players based on their network conditions and render
the videos keeping the coalition members in sync. In Figure 3a,
it is clear that there are clusters of players who play a video in
almost equal quality levels. Although we observe that the average
variation in the video quality is high for FLiDASH compared to other
baselines. FLiDASH, by default, plays the video in a high bitrate
compared to other baselines; therefore, even a single quality-level
fluctuation significantly impacts the overall QoE. Further, a forceful
self-download contributes to the bitrate variation. Therefore, we
observe higher bitrate variation in FLiDASH compared to other
baselines.
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Figure 4: Overall QoE distributions: FLiDASH outperforms
other baselines for 80% of the scenarios

Next, Figure 3c compares the total rebuffering time among vari-
ous baselines. We observe that the re-buffering time is very high
for DHT because it needs more time to search for a video segment
from the network before it can fetch it directly from the streaming
server. The re-buffering time for FLiDASH is moderated, although
it includes the skip time during the synchronization among the
members of the coalition. BOLA incurs almost no re-buffering time;
whereas Pensieve and MPC suffer from noticeable re-buffering time.

As the re-buffering time is a significant contributor in the overall
QoE measurement (Eq. (3)), the overall QoE for various baselines,
as shown in Figure 3d, indicates that FLiDASH outperforms other
baselines in term of maximum achievable QoE. Among the various
scenarios simulated over our developed platform, more than 50% of
the cases, FLiDASH incurs a high QoE (value between 2–4). Figure 4
shows the distribution of the overall QoE for FLiDASH in compari-
son with other baselines. We observe that FLiDASH outperforms
other baselines for 80% of the time.

4.4 Direct Traffic from the CDN
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Figure 5: Direct traffic from the CDN: The direct download
load from the server is more than the DHT-based approach
bus less than other baselines

One of the major objectives of FLiDASH is to reduce the direct
traffic from the CDN server when multiple co-located players play
the same live video. In Figure 5, we plot the direct traffic from the
content server by different baselines in terms of (a) the total bytes
downloaded, and (b) video segments directly downloaded from the
content server. We observe that the DHT based system downloads
minimum data from the CDN. In FLiDASH, players are bounded to
receive data from its own coalition only, while in case of DHT, a
player can share segments with as many players as possible in the
complete network. The standalone players need to download all the
segments directly from the server. As a consequence, we observe a
performance trade-off here between a complete peer-to-peer based
approach and the coalition-based approach – FLiDASH significantly
improves the QoE performance while having little increase in the
CDN traffic overhead. In a nutshell, the proposed approach makes a
balance between the QoE and the network traffic overhead during
live video streaming.

4.5 Impact of Coalition Size
We next analyze the performance of FLiDASH in the context of
various design choices. First, we check the impact of coalition size
on the performance of FLiDASH4. Figure 6a shows the amount of
data downloaded at each client from the streaming server (CDN)
and the total amount of upload data from each client indicating
the local network traffic that has been used to distribute the down-
loaded segments among the coalition members. We observe that
a large coalition size reduces the download data share among the
streaming clients, as the total video data gets distributed among the
coalition members. However, we further observe an increase in the
4In all the previous experiments, we have fixed the maximum coalition size to 4 players
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Figure 6: Effect of Coalition Size – Large coalitions reduce
the CDN load but increase intra-network data consumption
and the forceful self-download due to deadline misses

upload data share, as each client needs to distribute the individually
downloaded video segments to all other clients. However, it can be
noted that the download data actually contributes to the network
(CDN) load, whereas the upload data is over the local network only.

Figure 6b indicates the percentage of forceful self-download with
different coalition sizes. We observe that with increasing coalition
size, the percentage of forceful self-download drops till coalition
size 5, and then it increases. Ensuring playback synchronization
is difficult when the coalition size is either too small or too large.
With a very small coalition size, the data download overheads for
individual clients increase, and thus, a small variation in the net-
work bandwidth may result in a deadline miss. On the other hand,
with a large coalition size, the variation in the instantaneous net-
work bandwidth among the coalition members is more, and there-
fore the clients having less instantaneous network bandwidth may
experience a deadline miss, resulting in a forceful self-download.
Therefore, we see that there exists an optimal coalition size (5 in
our setup) which indeed reduces the forceful self-download thus
improves the overall QoE by reducing the bitrate variation.
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Next, we analyze how the coalition size impacts the total down-
load share among coalition members, indicating the load-fairness
of the system. Figure 7a indicates that a large coalition reduces
individual download shares among coalition members. In terms
of load-fairness, we observe that large coalitions provide better
fairness. We also plot the 𝑦 = 1

𝑥 curve which shows the theoretical

fair share among the coalition members. It is conforming for us to
see that the average load-fairness fits the theoretical fair share.

To quantify the QoE fairness among the coalition members, we
measure the Jain fairness index [6] on the measured QoE of the
individual players in two categories – (i) intra-coalition QoE fairness
(fairness among the individual members of a coalition) and (ii) inter-
coalition QoE fairness (fairness among different coalition members).
Figure 7b shows that the intra-coalition QoE fairness index is al-
ways close to 1, which indicates good fairness among the coalition
members in terms of the QoE experienced by individual clients of
a coalition. However, the inter-coalition QoE fairness initially gets
reduced with increasing coalition size up to 5. As different coali-
tions can play the video in different average bitrates, which has a
major contribution to the overall QoE, we initially see this drop in
the inter-coalition QoE fairness. Interestingly, inter-coalition QoE
fairness increases with a large coalition size, as large coalitions re-
sult in less number of coalitions, hence less bitrate variation among
different coalitions.

5 DISCUSSION AND CONCLUSION
In this paper, we develop a middlebox-free collaborative adaptive
live streaming system which improves the overall QoE while re-
ducing the network traffic. The architecture utilizes a federated
platform where the streaming players form coalitions and schedule
video downloads in a distributed way without the help of any Inter-
net middleboxes. The proposed architecture has been implemented
and evaluated over a thorough emulation platform, and we observe
significant improves in the overall QoE with a reduction in the load
at the live streaming server.

A real-world implementation of FLiDASH requires the support
of a proximity server and installation of the playback client in
the end-user’s device. It can be noted that the currently available
commercial client applications (like YouTube, Twitch clients) need
to have FLiDASH support, although no changes are required at the
content-server or ISP side. Further, the system does not use any
Internet-middlebox for coalition formation. We can also address the
issues faced by existing internet middleboxes, like when the clients
are behind a NAT, by using a Session Traversal Utilities for NAT
(STUN) [13] or a Traversal Using Relays around NAT (TURN) [12]
server. In this aspect, FLiDASH provides a more deployment-ready
solution compared to ICN-DASH [9] or Multicast ABR [1].

We believe that FLiDASHhas the potential for deploying a highly-
scalable architecture for mass-scale live streaming of videos while
incurring low overhead to the backbone network. Indeed, such a
system can be very useful for various developing countries where
live streaming of video contents has significantly increased in the
recent years, although the network backbone infrastructure is yet
to be matured [8].
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