
A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming
Lovish Chopra

∗

Indian Institute of Technology

Kharagpur, India

lovishchopra98@gmail.com

Sarthak Chakraborty
∗

Indian Institute of Technology

Kharagpur, India

sarthak.chakraborty@gmail.com

Abhijit Mondal

Indian Institute of Technology

Kharagpur, India

am@abhijitmondal.in

Sandip Chakraborty

Indian Institute of Technology Kharagpur

Kharagpur, India

sandipc@cse.iitkgp.ac.in

ABSTRACT
With increasing advancements in technologies for capturing 360°

videos, advances in streaming such videos have become a popular

research topic. However, streaming 360° videos require high band-

width, thus escalating the need for developing optimized streaming

algorithms. Researchers have proposed various methods to tackle

the problem, considering the network bandwidth or attempt to

predict future viewports in advance. However, most of the exist-

ing works either (1) do not consider video contents to predict user

viewport, or (2) do not adapt to user preferences dynamically, or

(3) require a lot of training data for new videos, thus making them

potentially unfit for video streaming purposes. We develop PARIMA,
a fast and efficient online viewport prediction model that uses past

viewports of users along with the trajectories of prime objects as

a representative of video content to predict future viewports. We

claim that the head movement of a user majorly depends upon

the trajectories of the prime objects in the video. We employ a

pyramid-based bitrate allocation scheme and perform a comprehen-

sive evaluation of the performance of PARIMA. In our evaluation,

we show that PARIMA outperforms state-of-the-art approaches, im-

proving the Quality of Experience by over 30% while maintaining

a short response time.

CCS CONCEPTS
• Information systems→ Data mining; Multimedia stream-
ing; • Mathematics of computing → Time series analysis; •
Computingmethodologies→ Supervised learning by regres-
sion.

KEYWORDS
360° Video Streaming, Online Learning, Adaptive Streaming

∗
Both authors contributed equally to this research.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3450070

ACM Reference Format:
Lovish Chopra, Sarthak Chakraborty, AbhijitMondal, and Sandip Chakraborty.

2021. PARIMA: Viewport Adaptive 360-Degree Video Streaming. In Pro-
ceedings of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubl-
jana, Slovenia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3442381.3450070

1 INTRODUCTION
360° videos have recently captured attention in the industry [1, 2, 8]

as well as in academia [13, 18, 21, 30, 32] due to their immersing

and fascinating experience. Different video streaming platforms

like Facebook and Youtube have introduced 360° streaming as a

part of their website and applications. However, one of the biggest

disadvantages of 360° video streaming is the large bandwidth re-

quirement to provide a high-quality user experience. Since users

have the flexibility to choose which part of the video they wish

to see, the enriching experience comes with the cost of significant

transfer of data, while only the part of the frame within the view-

port of the video (Field of View of the video player) can be seen

by the users. Based upon general calculations, roughly 80% of the

bandwidth is wasted during the streaming of a 360° video, as a user

rarely watches frames other than the viewports [32].

Due to large frame size, for a specific bandwidth, 360° videos

are streamed at a lower quality than a regular video. Thus, there

is a need for optimisations over 360° video streaming, which have

emerged due to the large number of novel applications that they

support [19]. The current standards for general video streaming

over the web use HTTP Adaptive Streaming (HAS) or Adaptive Bi-
trate Streaming (ABR). During ABR, the streaming bitrates (quality)

of the video frames are dynamically adapted based on the under-

lying network condition to ensure the best Quality of Experience

(QoE) for the end users [25]. Considering this, the optimisations

during a 360° video streaming can come from two fronts –

(a) predicting the user viewports in advance so that the maxi-

mum network bandwidth can be utilised to stream the view-

port part of the frames at the best possible quality (or bitrate),

(b) deciding bitrates for the viewports as well as for the non-

viewports in the frames dynamically on-the-fly to maximize

the end-users’ QoE with the maximum utilisation of the

available network bandwidth.

Many 360° video streaming platforms [1, 2] use tile-based stream-

ing methods [14, 20, 41], where the frames of a video are spatially

https://doi.org/10.1145/3442381.3450070
https://doi.org/10.1145/3442381.3450070
https://doi.org/10.1145/3442381.3450070

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

divided into𝑀 × 𝑁 tiles and streamed as𝑀𝑁 chunks of tiles. Cur-

rently, most of the 360° platforms like Youtube and Facebook [2]

use tiling-based methods for transferring the video frames. Recent

researches [18, 28, 30, 32] in the field of 360° videos are focused on

building models that can predict the viewport of a user to send only

the part of the frame containing the viewport at higher quality and

the rest of the frame at a lower quality, thus saving bandwidth. In

other terms, at the same bitrate, a video can be viewed at a higher

quality with viewport adaptive streaming since a higher proportion

of the bitrate will be assigned to the viewport. However, many

of these approaches for viewport-adaptive 360° streaming do not

utilise the exclusive video contents to predict the future viewports

or adjust to user preferences during streaming or are not suitable

from a streaming perspective [28, 30]. Consequently, the existing

methods are mostly limited to specific types of videos and fail to

satisfy all the primary goals of video streaming, such as maximum

video quality at the viewports, smoothness in temporal scale as well

as in the spatial scale (smoothness in the quality while moving from

one tile to an adjacent tile), and minimum re-buffering latency.

The user viewport depends on both (i) the content of the video

and (ii) the personalised choice of the viewer, depicted by the past

viewports. For example, in the case of a soccer match, the viewer

may want to follow his/her favorite player or might be interested

in the whole soccer field range, depending upon his/her personal

choice. Similarly, for a concert video, the user might either focus

only on the performer or might want to see the audience’s reac-

tions as well. Given such dynamic possibilities of having different

viewports in the temporal scale for different viewers, viewport pre-

diction in itself is a challenge. Consequently, such prediction would

never result in a 100% accuracy; therefore, during the 360° video

streaming, all the tiles of the frames need to be streamed, although

the predicted viewport tiles may be streamed a higher quality than

others. However, an abrupt quality change among the viewport

tiles and the non-viewport tiles is also not desirable, as it would

affect the video’s spatial smoothness and thus, can affect the overall

QoE. Finally, the prediction mechanism needs to be fast so that

per-frame bitrates can be predicted in an online fashion during the

videos’ streaming. Given such multi-dimensional constraints, the

overall optimisation of the 360° video streaming is indeed a complex

prediction and control problem.

In this paper, we have developed a 360° viewport-adaptive video

streaming platform. The viewport prediction model on the client-

side is online and adjusts to user preferences dynamically based

on the video content.We claim that the viewport of a user depends
upon the video contents along with the user’s personal choice, based
upon the movement trajectory of the prime objects in the video. Our
platform performs a one-time preprocessing of the video on the

server-side to obtain the video’s object trajectories. Our viewport

prediction model, PARIMA, which is an augmented combination of

Passive Aggressive (PA) Regression and Auto-Regressive Integrated
Moving Average (ARIMA) times series models, utilises the set of

previously observed viewports and the object trajectories for the up-

coming set of frames to predict the viewports for that set of frames,

and incrementally learns the weights in an online fashion, thus

adapting to user preferences dynamically. The augmented combi-

nation combines the benefits of the two individual models to create

a model efficient for video streaming. Based on the predictions, the

client allocates bitrates to each of the tiles using a pyramid-based

allocation scheme, allocating a higher proportion of bitrate to the

tiles corresponding to the predicted viewport and maintaining the

QoE of the user. We do not model bitrate-adaptive streaming as a

part of this research and assume the user bandwidth to be constant.

We evaluate our model on two publicly available data sets, one

consisting of 5 videos with head movement data for 59 users, while

the other consisting of 9 videos watched by 48 users, each video

having a wide range of static and moving objects. We have made

our code public
1
for the research community. Using PARIMA, we

have achieved an average QoE improvement of around 35% and

78% over two baselines and an average improvement of 117% in

adaptivity over a non-adaptive bitrate allocation scheme. Our model

is lightweight and exhibits a prediction latency of under 1 second

for a chunk size of the same duration.

2 RELATEDWORK
In traditional HTTP-based adaptive streaming, a video is parti-

tioned into temporal segments, and each segment is streamed with

the desired quality to minimize the bandwidth requirement while

maximizing QoE for the user, thus focusing on network conges-

tion and available bandwidth. On the other hand, optimizations

in 360° video streaming involve an effort to reduce the streaming

system’s high bandwidth requirements by learning a model to pre-

dict the user viewports. The adaptations in 360° video streaming

involve viewport-adaptive and network-adaptive streaming tech-

niques. Viewport-adaptive streaming aims to predict the future

viewport of a user by learning user head movements to allocate

specific parts of the framewith a higher bitrate. In contrast, network-

adaptive streaming tends to model bandwidth fluctuations to utilize

network bandwidth completely. Dynamic Adaptive Streaming over

HTTP (DASH) [35] is a streaming standard that adaptively streams

video based on the link bandwidth between server and client.

Any video streaming platform is typically a client-server sys-

tem. For 360° videos, due to the large frame size, each frame in the

temporal chunks is further divided spatially into tiles [14, 20, 41],

and each of these chunks of tiles is stored at different bitrates on

the server-side. Each frame may typically be divided into 64–100

tiles, with each chunk of tiles being of usually 1 to 4 seconds [11].

At the back-end of the client-side, it requests the server for chunks

of tiles at specific bitrates based upon the preferred quality and

bandwidth available to the client. In adaptive bitrate streaming, H

Mao et. al. [27] has proposed a reinforcement learning-based tech-

nique that learns the adaptive bitrate (ABR) algorithms adapting

to a wide range of environment enhance user’s quality of experi-

ence (QoE). It learns a control policy for bitrate adaptation from

network throughput statistics and downloads the past few video

chunks purely through experience. PARSEC [16] and SR360 [12]

uses a super-resolution on the client-side to stream video under

constrained bandwidth, thus reducing bandwidth requirements and

improving QoE for 360° videos.

Several studies have used viewport adaptive video streaming as

a part of their research. Regression-based methodologies have been

studied by [33] and [10] where historical FoV trajectory is used.

Works like [39] and [28] cluster users periodically based on the head

1
https://github.com/sarthak-chakraborty/PARIMA

https://github.com/sarthak-chakraborty/PARIMA

A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Equirectangular image (b) Cube map projection (c) Stitched image with sample bounding
boxes of objects detected

Figure 1: Figure shows the equirectangular projection, different faces of corresponding cubemapprojection and stitched image.
Image is stitched such that the cube faces share common boundary. The bounding boxes in stitched image are examples for
demonstration of object tracking. In reality, many more bounding boxes will be detected in the frame.

movement trajectory and assign new users to the existing clusters

and predict the viewport. These, however, do not consider the use of

video content and require an existing dataset of user viewports for

any new video before predictions. Flocking based methodology is

described in [36], which is applicable for a live 360° video streaming

where a large number of users are available concurrently. Recent

studies like DRL360 [42] and [12] have used deep reinforcement

learning-based framework to predict viewport and optimize QoE

objectives across a broad set of dynamic features. However, they

don’t consider video content while predicting viewports.

The existing literature has studied the saliency map concept

to analyze the video contents [18, 30, 31]. A saliency map shows

the properties of an image at the pixel-level, where a probability

map over all the tiles is used, and the bitrate is decided based on

this probability distribution. Fan et.al. [18] in his studies devel-

oped LSTM based model that learns the sensor-related features

and image saliency map to predict viewer fixation in the future.

PanoSalNet [30] learns the saliency map from user viewport data

using DCNN and uses the LSTM network to predict the viewport.

Mosaic [32] makes the use of a CNN + LSTM network to find a

tile probability map using a saliency map and user head movement

logs as inputs. However, learning a saliency map from head move-

ments requires a lot of training data, making the model sensitive

to extending to new videos. The use of LSTM models in the above

works leads to a large number of parameters, and these systems

do not update the parameters throughout streaming, leading to a

lack of dynamic user adaptation, making them potentially unfit for

adaptive video streaming.

This work addresses the issues of the previous studies and in-

corporates video contents, expressly object trajectories, and past

viewports of the user to predict the next set of viewports. Though

saliency maps had been used as a representative for video content,

those have been generated only from the existing head movement

data and not using the video content explicitly. Additionally for

saliency maps, multiple areas of a frame can be predicted as salient

(corresponding to multiple objects in the video), and hence, the tiles

outside the viewport can be given high bitrate, resulting in possibly

lower QoE. Our model tends to these shortcomings, adapts to user

preferences dynamically, is not heavily and statically parameterised

and is easily extensible to new videos.

3 SYSTEMS OVERVIEW
Streaming 360° videos involve a collection of tasks that need to

be performed in order to provide the best user experience. Our

methodology involves the use of video content to predict the future

viewport of the user accurately. The task of finding the contents

involves a detailed analysis of the trajectories of the objects present

in the video and using them efficiently for viewport prediction. The

user’s current viewport is detected by capturing the headmovement

using the movement of the device playing the video.

3.1 Video Preprocessing
Based upon our claim of user viewport depending upon the tra-

jectories of prime objects in the video, we first run a one-time

preprocessing of the 360° video to obtain the object trajectories on

the server-side. The object trajectory meta-data required for view-

port prediction can be communicated to the client before streaming.

Given the input video in the form of equirectangular frames [4],

we index objects over the frames such that the same objects are

assigned the same indices over multiple frames. The trajectory of

an object is represented by the object index and a list of coordinates

of the object over various frames. Existing object trajectory algo-

rithms [23, 40] cannot be used here since 360° videos differ from

general videos in various aspects, namely, (1) objects can wrap

around an equirectangular frame to emerge from another side of

the frame, and (2) the equirectangular frames are distorted and

typically cannot be used for object detection using standard algo-

rithms. Although there exist a few methods for object tracking over

360-degree videos, they either (1) work for single object tracking,

or (2) run object tracking in equirectangular space. Consequently,

the existing techniques fail in our case because we want more effi-

cient multi-object trajectories for viewport prediction. Hence, we

develop a robust methodology that can effectively track objects in

360° videos, which we describe below.

3.1.1 Equirectangular to Cube-Map Conversion: 360° frames in the

equirectangular form are not ideal for image processing purposes

because the frames are distorted in nature (Figure 1(a)). The dis-

tortion increases as we go near the poles. Hence, we convert the

equirectangular frames to their cube map projection [6], which is

the least distorted version of a 360° frame as it projects the frame on

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

(a) Bounding boxes from Figure 1(c) re-
projected to equirectangular frame and as-
signed initial object IDs

(b) Indexing objects for next frame in spher-
ical space

(c) Assigning object ids based upon the min-
imum spherical distance between active and
next frame objects

Figure 2: Spherical Object tracking for 360° videos

six sides of a cube. The conversion is carried out by first converting

the equirectangular frame to its corresponding spherical projec-

tion. In the second step, points in the spherical projection are then

mapped to their corresponding faces in a cube-map. An example

of the conversion from equirectangular to cube-map projection is

shown in Figure 1(a) and 1(b).

3.1.2 Frame Stitching and Object Detection: After converting the

frames to their cube map projection with the distortion issue solved,

we need to detect the objects present in each frame. However, in the

conversion, since each pixel of an equirectangular frame is allocated

a unique face of the cube, pixels of a single object might split and get

mapped to different faces depending on its location on the sphere.

Hence, if we run any regular object detection algorithm on each

face of the cube separately, we might either not be able to detect the

object or detect it as two different objects. To overcome this issue,

we stitch the cube’s different faces to form a single undistorted

image (Figure 1(c)). The stitching ensures that any object mapped

to adjacent faces of the cube gets treated as an entire entity, ensuring

that object detection and tracking are continuous.

We have used YOLOv3 [34] algorithm on the stitched image of

each frame to detect the objects and obtain their bounding box

coordinates (Figure 1(c)), which is effective in detecting objects due

to the undistorted continuous nature of the image. We explicitly

eliminated object classes because we can have multiple objects of

the same class in a frame. The bounding box coordinates necessarily

determines the current focus of the user among multiple available

objects.

After the bounding box coordinates for each object is obtained,

they are then reverse-translated back to their equirectangular pro-

jection. This is because the object tracking algorithm and the view-

port prediction model run in the equirectangular space.

3.1.3 Object Tracking: The final step in our pipeline for video

preprocessing is to track the objects identified. Tracking objects

essentially involves tagging them and assigning the same ID to

‘close’ objects in successive frames. As discussed earlier, a major

difference in 360° videos is the flexibility of an object to wrap around

the frame horizontally, which will be continuous in a spherical view

but discontinuous in the equirectangular projection, in the case of

which it should be assigned the same ID. Hence, we have devised

a robust approximate spherical centroid object tracking algorithm

that can index objects in 360° videos efficiently. Here is a descriptive

detail of the methodology used:

(1) Compute the centroid of the equirectangular bounding boxes

of objects for all frames.

(2) For the initial frame, allocate each object a unique ID. These

are the currently active objects (Figure 2(a)).
(3) For the subsequent frames:

(a) Project each centroid of the objects in the frame and cur-

rently active objects to spherical projection similar to Fig-

ure 2(b) by casting the latitude and longitude to their cor-

responding spherical coordinates.

(b) For each pair of new frame centroids and active centroids,

find the solid angle subtended by the spherical sector,

which has the pair at diametrically opposite ends.

(c) For each object 𝑂𝑖 in the current frame, find the active

object 𝑂𝑎𝑐𝑡𝑖𝑣𝑒
𝑗

, such that:

𝑠𝑜𝑙𝑖𝑑𝑎𝑛𝑔𝑙𝑒 (𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 ,𝑂𝑎𝑐𝑡𝑖𝑣𝑒

𝑗) <= 𝑠𝑜𝑙𝑖𝑑𝑎𝑛𝑔𝑙𝑒 (𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 ,𝑂) ∀𝑂 ∈ 𝑂𝑎𝑐𝑡𝑖𝑣𝑒

𝑠𝑜𝑙𝑖𝑑𝑎𝑛𝑔𝑙𝑒 (𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖 ,𝑂𝑎𝑐𝑡𝑖𝑣𝑒

𝑗) <= 𝑠𝑜𝑙𝑖𝑑𝑎𝑛𝑔𝑙𝑒 (𝑂 ′,𝑂𝑎𝑐𝑡𝑖𝑣𝑒
𝑗) ∀𝑂 ′ ∈ 𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡

where𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
is the set of objects detected in the current

frame,𝑂𝑎𝑐𝑡𝑖𝑣𝑒
is the set of active objects up to the previous

frame. (Note that both ways need to be satisfied). Assign

the𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

with the same ID as the corresponding active

object 𝑂𝑎𝑐𝑡𝑖𝑣𝑒
𝑗

(Figure 2(c)).

(d) Activate New Object: If an object 𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

in the current

frame has not been assigned any existing active object, it

means that it has appeared for the first time in the video. In

this case, we assign the object a new ID and set 𝑂𝑎𝑐𝑡𝑖𝑣𝑒 =

𝑂𝑎𝑐𝑡𝑖𝑣𝑒 ∪ {𝑂𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑖

}
(e) Deactivate Old Objects: If an active object 𝑂𝑎𝑐𝑡𝑖𝑣𝑒

𝑘
is not

assigned to any new object in the current frame, it means

that either the object has disappeared or it went unde-

tected. If the number of consecutive frames for which the

A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

PARIMA

Object
Trajectories

User
Viewport

ARIMA

ARIMA
(2,1,1)X Coordinate

Y Coordinate ARIMA
(3,1,0)

X Coordinate

Y Coordinate

Intermediate
Viewport

Passive-Aggressive

Predict

Train

Weights

Loss

Predicted
Viewport

Adjust
WidthAdjust

Width

Figure 3: PARIMA Viewport Prediction Model

object is not assigned any new object crosses a heuristic

threshold of 30, we declare the object to have disappeared,

and we set 𝑂𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑂𝑎𝑐𝑡𝑖𝑣𝑒 − {𝑂𝑎𝑐𝑡𝑖𝑣𝑒
𝑘

}. However, if it
reappears within 30 frames, it will be assigned the old

object ID, the object coordinates for the missing frames

are interpolated using the last available active and the new

coordinates.

Thus, we will obtain a set of centroid coordinates for each object

index that was detected. The algorithm is robust because it uses

the solid angle between two centroids in spherical projection and

hence, takes care of the object wrapping issue discussed above,

as well as interpolates object coordinates for missing frames. The

window of 30 frames helps to overcome the inconsistencies of the

YOLO algorithm where an object might go undetected for some

frames in between.

Earlier, we have argued that stitching the different faces of the

cube of a cubemap projection alleviates the problem of a distorted

object either being detected as two separate object entities or not

being detected at all. On the contrary, as shown in Figure 1(c),

the ‘left’ and the ‘back’ faces of the cube were not stitched and

an object transitioning among these two faces might still suffer

the same fate. However, such minor inconsistencies are countered

inherently in our object tracking algorithm, where a heuristic win-

dow of 30 frames along with spherical tracking technique helps to

assign same IDs to the object for the missing frames. If the object

is detected as two object entities (lower probability), one of them

will disappear post-transition and will not be further considered

by the model(Section 3.2). The use of previous viewport in the

model further alleviates the problem, and hence we get a consistent

representation of the video contents.

3.2 Viewport Prediction
Predicting the upcoming viewport from the past viewports and the

video metadata is a challenging task, especially when we want to

model a dynamic system based on the videos’ content. The learning

task must be fast, accurate, online and should incrementally update

the model weights to be able to adapt to user preferences quickly.

An important and obvious requirement of the streaming model

is to be able to predict multiple frames in the future at a single

instance and stream them in the form of temporal chunks of specific

𝑡 seconds duration, rather than just predicting a single frame at a

time, in order to maintain the QoE for the user. However, a larger

chunk size can compromise the prediction accuracy, since user

viewport tends to vary significantly within larger chunk duration,

while these changes get reflected in the model only after the chunk

is streamed. We evaluate the optimal chunk size duration in Section

5.1, based upon which, we use 1 second chunk size (= 𝑓 𝑝𝑠 number

of frames) for viewport prediction.

We have devised a model named PARIMA (Figure 3), which is

an augmentation of ARIMA [7] time-series model with Passive

Aggressive Regression [15], to predict user viewport effectively.

The set of viewports for the next chunk of frames are predicted

using the previous chunk’s viewports and the object coordinates

for the upcoming chunk of frames, obtained from Section 3.1.

Time series models are often used in predicting head movements

of users [20]. Hence, it can also be used to predict the next viewport

of a user while watching a 360° video because the next viewport is

essentially a temporal function of user head movement. The model

takes as input the 𝑥 and 𝑦 coordinates (horizontal and vertical

components respectively) for the viewports of the previous chunk

of frames to predict the viewports for the next chunk of frames. Let

(𝑥 𝑓 , 𝑦𝑓) be the viewport at frame 𝑓 . However, if the viewport wraps

around the equirectangular frame to another side of the frame, it

would create a discontinuous time series of viewports. To model it

as a continuous time series, 𝑥 𝑓 needs to be width-adjusted, which

is performed by the ‘Adjust Width’ component in Figure 3 using

the following transformation:

𝑥 𝑓 :=


𝑥 𝑓 +𝑤𝑖𝑑𝑡ℎ if [|𝑥 𝑓 +𝑤𝑖𝑑𝑡ℎ − 𝑥 𝑓 −1 | < |𝑥 𝑓 − 𝑥 𝑓 −1 |]
𝑥 𝑓 −𝑤𝑖𝑑𝑡ℎ if [|𝑥 𝑓 −𝑤𝑖𝑑𝑡ℎ − 𝑥 𝑓 −1 | < |𝑥 𝑓 − 𝑥 𝑓 −1 |]
𝑥 𝑓 otherwise

(1)

To overcome the case of a viewport component in the time series

being negative and hamper further calculations, we shift the entire

series to the right by 𝑤𝑖𝑑𝑡ℎ. It is to be noted that any viewport

position 𝑥 𝑓 is essentially same as 𝑥 𝑓 +𝑤𝑖𝑑𝑡ℎ for 360° videos because

of wrapping-around property.

In order to remove inconsistencies from the data that can cause

the entire viewport of the chunk from having identical values (thus

generating a positive semi-definite auto-covariance matrix), we

add random(0, 0.1) to the viewport coordinates. Augmented Dickey-

Fuller test [24] showed that projecting the entire viewport data into

logarithmic domain is necessary to maintain stationarity of the time

series. The viewport coordinates 𝑥 𝑓 and 𝑦𝑓 are then transformed

to 𝑙𝑜𝑔(𝑥 𝑓) and 𝑙𝑜𝑔(𝑦𝑓) respectively. These chunks of transformed

x and y coordinates go into separate ARIMA models to obtain the

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

future chunk of viewports in logarithmic domain, which are reverse-

transformed to the viewport space by simple exponentiation (see

Figure 3: ‘ARIMA’ block).
The above set of intermediate viewports obtained is fed as an

input to the Passive-Aggressive Regression model
2
. General Model

Definition: Passive-Aggressive Regression [15] is an efficient online

learning regression algorithm that computes the mapping 𝑓 : R𝑛 →
R, 𝑓 (x;𝜃) = 𝜃𝑇 x where, parameters 𝜃, predictors x ∈ R𝑛 . The
algorithm uses the Hinge Loss Function, given by:

𝐿(𝜃, 𝜖) =𝑚𝑎𝑥 (0, |𝑦 − 𝑓 (xt;𝜃) | − 𝜖) (2)

where 𝑦 is the actual value of the response variable. The parameter

𝜖 determines a tolerance for prediction errors. The weight update

rule for PA Regression is:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑚𝑎𝑥 (0, |𝑦𝑡 − 𝜃𝑇 xt | − 𝜖)
| |xt | |2 + 1

2𝐶

𝑠𝑖𝑔𝑛(𝑦𝑡 − 𝜃𝑇 xt)xt (3)

We run a coupled Passive-Aggressive Regression model that

predicts the 𝑥 and 𝑦 coordinates of the viewport for the next set

of frames (see Figure 3: Passive-Aggressive Block). Along with the

intermediate viewport, the model uses the object trajectories that

were pre-calculated in Section 3.1. The equations for the predictions

for each frame in the future chunk of viewports are given by:

𝑋 ′
𝑓
= 𝜃0𝑥 + 𝜃𝑋 .𝑋𝐴𝑅𝐼𝑀𝐴

𝑓
+
𝑁𝑜𝑏 𝑗∑︁
𝑖=1

𝜃𝑖𝑥 .𝑂𝑋𝑖𝑓

𝑌 ′
𝑓
= 𝜃0𝑦 + 𝜃𝑌 .𝑌𝐴𝑅𝐼𝑀𝐴

𝑓
+
𝑁𝑜𝑏 𝑗∑︁
𝑖=1

𝜃𝑖𝑦 .𝑂𝑌𝑖 𝑓

(4)

where (𝑋 ′
𝑓
, 𝑌 ′

𝑓
) is the predicted viewport of the PARIMA model,

(𝑋𝐴𝑅𝐼𝑀𝐴
𝑓

, 𝑌𝐴𝑅𝐼𝑀𝐴
𝑓

) is the intermediate viewport obtained for frame

f using ARIMA model, (𝑂𝑋𝑖𝑓 ,𝑂𝑌𝑖 𝑓) coordinates for the 𝑖𝑡ℎ object

for frame 𝑓 and 𝜃 values are the model parameters.

Since the predicted viewport (𝑋 ′
𝑓
, 𝑌 ′

𝑓
)was initiallywidth-adjusted

using equation 1 in order to take care of wrapping around of view-

ports, we apply a mod 𝑤𝑖𝑑𝑡ℎ on the x-coordinate of the predicted

viewport to back-transform it within the equirectangular frame:

When the next chunk of frames is rendered in the video stream-

ing, the actual set of user viewports are obtained, and the weights

of the object features of the Passive Aggressive Regression model

are updated using the predicted and actual values of viewports as

per the update rule in Equation 3. At the start of the whole pro-

cess, we train the regression model with an initial 5 ∗ 𝑓 𝑝𝑠 frames

to prevent prediction from being 0 at the start. For these sets of

frames, we can either download the whole equirectangular frame

and assume the next frame’s predicted view to be the same as the

actual viewport of the previous frame. Figure 3, along with the

above equations, shows the computation for each chunk of frames,

with the same computation being repeated for all the chunks. It is

to be noted that for each chunk, we create a new ARIMA model

while the same Passive-Aggressive model is trained over various

chunks and reused (Red arrows in Figure 3 indicates that memory

2
We have used creme [22], a Python library for online Machine Learning. We have

modified the library code to accommodate our demands. One such change is fitting

the model for 𝑓 frames at a single instance.

is preserved and the model gets trained via this path). The viewport

prediction algorithm of PARIMA is formulated in Algorithm 1.

Algorithm 1: GetParimaViewport(𝑉 ,𝑀)

PARIMA based Viewport Prediction

Input: Object Trajectories 𝑂 𝑓 ∀𝑓 frames, Streaming

Viewport of the user 𝑉𝑓 ∀𝑓 frames, PA model𝑀 [1]

Output: Predicted Viewport for all frames

1 Initial Training of 5𝑓 𝑝𝑠 frames on model𝑀 [1]

2 Initialise list of Predicted Viewport Chunks 𝑃𝑉

3 for each chunk 𝑐 do
4 Initialise list of Predicted Viewports for Chunk 𝑐: 𝑃𝑉𝑐

5 𝐹𝑐−1 ← list of frames in chunk 𝑐 − 1
6 𝐹𝑐 ← list of frames in chunk 𝑐

7 Initialise chunk size 𝑐𝑠 = 𝑓 𝑝𝑠

8 (𝑋𝐹𝑐−1 , 𝑌𝐹𝑐−1) ← horizontal and vertical components of

𝑉𝐹𝑐−1

9 Adjust Width of 𝑋𝐹𝑐−1 according to Eq. 1

10 Make series (𝑋𝐹𝑐−1 , 𝑌𝐹𝑐−1) stationary
11 Initialise𝑀

[2]
𝑥 = 𝐴𝑅𝐼𝑀𝐴(2, 1, 1), 𝑀 [2]𝑦 = 𝐴𝑅𝐼𝑀𝐴(3, 1, 0)

12 Train𝑀
[2]
𝑥 on inputs 𝑋𝐹𝑐−1 to get 𝑋𝐴𝑅𝐼𝑀𝐴

𝐹𝑐
,𝑀
[2]
𝑦 on

inputs 𝑌𝐹𝑐−1 to get 𝑌𝐴𝑅𝐼𝑀𝐴
𝐹𝑐

13 for frame 𝐹𝑐
𝑓
∈ [𝐹𝑐

1
, 𝐹𝑐𝑐𝑠] do

14 𝑋 ′
𝐹𝑐
𝑓

← 𝑀 [1] (𝑂𝑋𝐹𝑐
𝑓
, 𝑋𝐴𝑅𝐼𝑀𝐴

𝐹𝑐
𝑓

) according to Eq. 4

15 𝑌 ′
𝐹𝑐
𝑓

← 𝑀 [1] (𝑂𝑌𝐹𝑐
𝑓
, 𝑌𝐴𝑅𝐼𝑀𝐴

𝐹𝑐
𝑓

) according to Eq. 4

16 Adjust Width of 𝑋 ′
𝐹𝑐
𝑓

by applying mod𝑤𝑖𝑑𝑡ℎ

17 Append (𝑋 ′
𝐹𝑐
𝑓

, 𝑌 ′
𝐹𝑐
𝑓

) to 𝑃𝑉𝑐

18 Append 𝑃𝑉𝑐 to 𝑃𝑉

19 Train𝑀 [1] on inputs 𝑂𝐹𝑐
1

→ 𝑂𝐹𝑐𝑐
and actual viewports

𝑉𝐹𝑐
1

→ 𝑉𝐹𝑐𝑐

20 return 𝑃𝑉

ARIMA time series model helps to maintain the locality infor-

mation and gives smooth predictions, while Passive-Aggressive

Regression tries to update the model weights at any update step in

such a way that the predicted value is as close to the actual value

as possible, leading to better adaptation with fast iterations. The

model update after every chunk ensures that it adapts to the user

preferences dynamically. The coefficients of the object coordinates

essentially represent the significance of that object, indicating user

preferences.

3.3 Bitrate Allocation
Once we obtain the predicted set of viewports for a chunk in the

form of equirectangular coordinates, we map them to the appro-

priate tile number since we use tiling-based streaming for the sys-

tem. As the next step, tiles in each frame need to be allocated

bitrates based upon the available bandwidth. Bitrate allocation to

tiles should be accomplished in a way such that the tiles correspond-

ing to the viewport should get higher bitrate than the off-viewport

A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

tiles. It is also essential to note that for a particular chunk of frames,

multiple tiles might be predicted as viewports since a user might

span across multiple tiles within the chunk. Hence, all the tiles

corresponding to the viewport need to be given a higher bitrate

than the rest. The bitrate should reduce gradually as we move away

from the viewport, to maintain an optimal experience for a user.

Algorithm 2: SelectBitrates(𝑇𝑓 , 𝐵𝑝)
Assign Bitrates to Chunks

Input: Predicted Tiles for chunk c: 𝑇𝐹𝑐 , Preferred total

bitrate: 𝐵𝑝
Output: Allocated Bitrates for chunk c: 𝐵𝑐

1 Initialise Bitrate 𝐵𝑐

2 Initialise weight𝑖 𝑗 = 1 for each tile (𝑖, 𝑗)
3 Initialise chunk size 𝑐𝑠 = 𝑓 𝑝𝑠

4 for frame 𝐹𝑐
𝑓
∈ [𝐹𝑐

1
, 𝐹𝑐𝑐𝑠] do

5 (𝑖 ′, 𝑗 ′) ← 𝑇𝐹𝑐
𝑓
, predicted viewport tile

6 weight𝑖′ 𝑗 ′ ← weight𝑖′ 𝑗 ′ + 1
7 for all (𝑖, 𝑗) ≠ (𝑖 ′, 𝑗 ′) do
8 𝑑𝑖 𝑗 ← min. manhattan distance from (𝑖 ′, 𝑗 ′)
9 if (𝑖, 𝑗) is within Video Player FoV then
10 weight𝑖 𝑗 ← weight𝑖 𝑗 + 1 −

𝑑𝑖 𝑗
2∗𝑚𝑎𝑥 (𝑑𝑖 𝑗)

11 else
12 weight𝑖 𝑗 ← weight𝑖 𝑗 + 1 −

𝑑𝑖 𝑗
𝑚𝑎𝑥 (𝑑𝑖 𝑗)

13 𝐵𝑐
𝑖 𝑗
← weight𝑖 𝑗∑

𝑖,𝑗 weight𝑖,𝑗
𝐵𝑝 , ∀(𝑖, 𝑗)

14 return 𝐵𝑐

Figure 4: General Pyramid Model of Bitrate Allocation. The
figure depicts allocation for a frame with 8 × 8 tiling, which
has viewport at tile (6, 4). Lower opacity signifies higher pro-
portion of bitrate to be allocated to the tile

We have incorporated pyramid-based bitrate allocation scheme
[20] in our model (Figure 4). To assign a distribution of bitrates to

the tiles (𝑖, 𝑗) in each chunk 𝑐 , we use a weight function that would

capture the proportion of total bitrate that should be given to a

specific tile (𝑖, 𝑗). Whenever a tile (𝑖 ′, 𝑗 ′) is a candidate viewport,
its weight is increased by a unit, and the weights of the other tiles

are increased based on a pyramid approach, where the weight of

the farthest tiles is increased by the least amount. Care is taken

to allocate a higher bitrate for tiles within the Video Player FoV

to maintain the Quality of Experience of the user. The distance

of a tile from the viewport (𝑖 ′, 𝑗 ′) is measured as the minimum

Manhattan distance because of the wrapping-around property of

360° frames. Due to the wrapping around property, the maximum

possible distance between two tiles is (𝑚 +𝑛)/2, where the tiling is
𝑚 × 𝑛. The weight function is then normalized, such that the net

weight across all tiles is one and then used to assign bitrates to each

tile proportionally as formulated in Algorithm 14.

4 EVALUATION TESTBED
In this section, we give a brief description of the setup, datasets

and the metrics used for the evaluation of our model. We have

run the object trajectory algorithm on an Intel Xeon Gold 6152

processor with 88 cores (typical desktop hardware works as well),

while the results for viewport prediction, bitrate allocation, and

streaming client have been generated using simple desktop having

Intel i5-4210U-quad-core processor and 8GB RAM.

Datasets: We use two popular datasets containing several 360-

degree videos of different categories along with head tracking logs.

The first dataset (ds1) [13] includes five videos freely viewed by

59 users each with each video watched for 70 seconds. The second

dataset (ds2) [38] has nine popular videos watched by 48 users with

an average view duration of 164 seconds. Each trace of the head

tracking logs for both the datasets consists of the user head position

in terms of unit quaternions (𝑤, 𝑥,𝑦, 𝑧) along with the timestamp,

which is converted to equirectangular viewport using the algorithm

suggested by Nguyen et. al. [29]
3
. We have used the first 60 seconds

of data for all the videos in our evaluation.

Baselines: The state-of-the-art baselines against which we have
compared the performance of PARIMA are described below:

• PanoSalNet: PanoSalNet [30] learns a panoramic saliency

map for each 360° frame by training a Deep ConvNet (DCNN)

inspired architecture. The saliency maps are then passed

along with user head movement data for the viewport pre-

diction via an LSTM architecture. We have used the already

available public code
4
as our baseline.

• Cluster Viewport: This method [28] clusters users based upon

their viewport history. It performs predictions for a new user

by finding the cluster that the user belongs to and then use

quaternion extrapolation to get the next chunk of viewports.

For this approach, we have implemented the model with

a prediction window of 1 second and have used pyquater-
nion[5] library for quaternion-related calculations. Fromhere

on, we will refer to this model as Clust for convenience.
• Non-Adaptive Bitrate Allocation (NABA) Model: To verify

the adaptivity of our model, that is, whether PARIMA can

allocate bitrates intelligently to increase QoE, an important

baseline to judge our model against is non-adaptive 360°

video streaming. Under this streaming model, there is no

viewport-adaptation and hence, all tiles get an equal pro-

portion of bitrate. In general, if 𝐵 is the preferred bitrate of

3
https://github.com/phananh1010/PanoSaliency (Access:May 23, 2021)

4
https://github.com/phananh1010/PanoSalNet (Access: May 23, 2021)

https://github.com/phananh1010/PanoSaliency
https://github.com/phananh1010/PanoSalNet

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

streaming and the video is spatially divided into𝑀 ×𝑁 tiles,

then the bitrate allotted to each tile will be 𝐵/(𝑀 × 𝑁).
On one hand, while PanoSalNet is a supervised learning strategy

that uses saliency maps (and hence, indirectly video contents) to

predict viewport, Clust is a recent state-of-the-art algorithm, which

uses unsupervised learning to cluster users and applies quaternion

extrapolation for every chunk. Using the abovementioned viewport-

adaptive streaming techniques having diverse methodologies yet

being congruent to our study, we established that our choice of

video content representation is more apt.

Metrics:
• Prediction Metrics: For evaluating the accuracy of viewport

prediction of our model, we have used Manhattan Tile Error

as our metric. Tile error denotes the minimum Manhattan

distance between the actual tile and the predicted tile, aver-

aged over the video length. The Manhattan Error is reported

as average over all frames and over all users for the video.

• QoE metrics: User perceived quality is measured in a deter-

ministic fashion using several QoE metrics that we define to

empirically evaluate our model performance.

(1) The first QoE metric (𝑄1) is the average bitrate consumed

by the user in the actual viewport. In essence, it denotes

the quality of the video perceived by the user. Let there be

X × Y number of tiles in the video with a media player

viewport dimension as 𝑃𝑤 ×𝑃ℎ . Mathematically, for chunk

𝑐 , 𝑄𝑐
1
is denoted as

𝑄𝑐
1
=

1

𝑛𝑐

𝑓𝑐∑︁
𝑖=1

(∑
𝑃𝑤×𝑃ℎ 𝑎

𝑖
𝑥,𝑦𝐵

𝑐
𝑥,𝑦

𝑡𝑖𝑙𝑒𝑠 (𝑃𝑤)𝑛 × 𝑡𝑖𝑙𝑒𝑠 (𝑃ℎ)𝑛
)

(5)

where, 𝑓𝑐 is the number of frames in the chunk 𝑐 . 𝐵𝑐𝑥,𝑦 is

the allocated bitrate for (𝑥,𝑦)𝑡ℎ tile in chunk 𝑐 and 𝑎𝑖𝑥,𝑦
is an indicator variable which becomes 1 if tile (𝑥,𝑦) is in
the viewport of 𝑖𝑡ℎ frame and 0 otherwise. 𝑡𝑖𝑙𝑒𝑠 (𝑃𝑤)𝑛 ×
𝑡𝑖𝑙𝑒𝑠 (𝑃ℎ)𝑛 is the total number of tiles in viewed in video

player. 𝑛𝑐 is a normalizing constant which is calculated

by the number of distinct viewport tiles in chunk 𝑐 .

(2) The second QoE metric (𝑄2) is a measure of the variation

of the bitrate within the viewport for each frame. This met-

ric ensures that we have minimum variation in bitrates of

various tiles within the video player viewport. For chunk

𝑐 ,

𝑄𝑐
2
=

1

𝑛𝑐

𝑓𝑐∑︁
𝑖=1

𝑆𝑡𝑑𝐷𝑒𝑣{𝐵𝑐𝑥,𝑦 : 𝑥 ∈ 𝑡𝑖𝑙𝑒𝑠 (𝑃𝑤),

𝑦 ∈ 𝑡𝑖𝑙𝑒𝑠 (𝑃ℎ)}
(6)

(3) The third QoE (𝑄3) captures the variation of bitrate among

different frames for a chunk. We would like to minimize

the amount of variation of quality from a viewport of

frame 𝑓1 to frame 𝑓2. For chunk 𝑐 ,

𝑄𝑐
3
=

1

𝑛𝑐
𝑆𝑡𝑑𝐷𝑒𝑣{

∑
𝑃𝑤×𝑃ℎ 𝑎

𝑖
𝑥,𝑦𝐵

𝑐
𝑥,𝑦

𝑡𝑖𝑙𝑒𝑠 (𝑃𝑤) × 𝑡𝑖𝑙𝑒𝑠 (𝑃ℎ)
: 𝑎𝑖𝑥,𝑦 = 1; ∀𝑖 ∈ 𝑓𝑐 , 𝑥 ∈ X, 𝑦 ∈ Y}

(7)

(4) The fourth QoE (𝑄4) captures the variation of viewport

bitrate across successive chunks, which is essential to

minimise for good Quality of Experience. For chunk 𝑐 ,

𝑄𝑐
4
= |𝑄𝑐

1
−𝑄𝑐−1

1
| (8)

For all the chunks C, the aggregate QoE is given by:

𝑄 =

𝐶∑︁
𝑐=1

(𝑄𝑐
1
−𝑄𝑐

2
−𝑄𝑐

3
) −

𝐶∑︁
𝑐=2

𝑄𝑐
4

(9)

In our results, we report the QoE for videos averaged across

all users.

Hyper parameters:
• Tiling: 8 × 8, amounting to total of 64 tiles.

• Chunk size: 1 second, as discussed in Section 3.2 and 5.1.

• ARIMA Time Series Model Order (p,d,q): (2, 1, 1) for the x-

coordinate and (3, 1, 0) for the y-coordinate. This is achieved
by hyper parameter tuning.

• PA Regression Hyper parameters: 𝐶 = 0.01, 𝜖 = 0.001. This is

achieved by hyper parameter tuning.

• Video Player Dimension: 600 × 300

• Preferred Video Bitrate by User: Assumed to be constant at 8

Mbps (1080p) for the experiment.

5 EVALUATION RESULTS
This section discusses the various experiments that we have per-

formed to demonstrate the effectiveness of PARIMA. We have com-

pared our model against the baselines mentioned in Section 4, as

well as separately perform an individual assessment of the viewport

prediction method. The results for the given datasets are generated

using an emulator, which replicates the model to behave the same

way as it would in a general 360° setup. However, we also developed

a basic video streaming system, where we have used a fast Kvazaar

HEVC [3, 37, 41] encoder-decoder along with GPAC MP4Box [26]

for the creation of HTTP DASH segments, which ensures that the

decoding time is low and is not a bottleneck in streaming. We use

MP4Client [26] for streaming client development.

5.1 Optimal Chunk Size Prediction
This subsection discusses the choice of the optimal chunk size/prediction

window for the model. Choosing an optimal chunk size essentially

brings forth a trade-off between the streaming time and the predic-

tion accuracy. An underlying trade-off also occurs where a client

may need to store a considerable amount of video for a smooth

experience, while prediction algorithms limit the amount of data to

be stored in buffer [9]. A smaller chunk size facilitates better predic-

tion accuracy and QoE for the user because of more frequent model

updates. In contrast, a larger chunk size would suffer from a poor

prediction model with low QoE. On the other hand, streaming time

would have to be low for the chunks to ensure smooth streaming

of video without buffering. We analysed PARIMA for four different

chunk duration: 0.5 seconds (chunk size: 𝑓 𝑝𝑠/2 frames), 1 second

(chunk size: 𝑓 𝑝𝑠 frames), 1.5 seconds (chunk size: 3𝑓 𝑝𝑠/2 frames)

and 2 seconds (chunk size: 2𝑓 𝑝𝑠 frames).

To justify our claim of shorter chunks producing better QoE, we

run the model on the five videos in dataset ds1 for the various chunk

sizes and report the QoE for each video, averaged across all chunks

for all users. As expected based upon the above argument, Figure 5

shows a strict decrease in the average QoE for all the videos as we

A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

increase the chunk size. Similar results were obtained for dataset

ds2. Hence, the smaller chunk size is always preferable over larger

ones in terms of QoE.

Chunk Size

Q
oE

0

50

100

150

200

250

0.5 seconds 1 second 1.5 seconds 2 seconds

Paris Timelapse Venice Roller Diving

QoE vs Chunk Size (ds1)

Figure 5: QoE of videos for varying chunk sizes

(a)

(b)

Figure 6: Comparison of streaming times of chunks of dura-
tion 0.5 seconds and 1 second

However, although a chunk size of 0.5 seconds has a better QoE

than a chunk of 1 second, it is not efficient from a video streaming

point of view regarding the total streaming time of a chunk in a

video. To argue over this fact, we find the average total streaming

time for a chunk for the videos in ds1 averaged over all chunks for

all users for chunk sizes of 0.5s and 1s (Figure 6). The streaming

time is essentially composed of four parts: (1) model update time, (2)

viewport prediction time, (3) bitrate allocation time, and (4) network

time. The network time includes the time taken by the client to send

a request and receive the video chunk from the server, decode the

chunks, and stream them. As evident from the graphs, the model

update and bitrate allocation time is meagre and not a bottleneck for

any of the videos, whereas the prediction time is comparatively high.

To facilitate our model even on 3G networks, we have considered

the network latency to be 150 ms [17]. We use the video-streaming

system developed to find the average decoding and streaming time

of the chunks to be 50ms, making a total network time of 200ms

for one chunk. We observe that for the chunk duration of 0.5s, the

total streaming time is very close, and in some cases, exceeding 0.5

seconds. On the other hand, the total streaming time is comfortably

under 1 second for a chunk duration of 1s, thus facilitating smooth

video streaming. Also, MP4Box [11, 26] typically generates DASH

segments of 1 second, also supported by Flare [33], which further

emphasizes on using 1 second over 0.5 seconds as our chunk size.

Similar results were obtained on ds2. If a chunk of a certain time

duration t seconds takes more time than t seconds to stream the

chunk, it would essentially mean that the video will buffer at every

chunk, which is not desired for a video-streaming system. Hence,

our claim of using a chunk size of 𝑓 𝑝𝑠 (chunk duration 1 second) is

justified.

5.2 Enhancement over Individual Models
We claimed that PARIMA combines the benefits of the Passive-

Aggressive Regression and ARIMA time series model. Thus, in

order to justify our claim, we run viewport prediction for Passive-

Aggressive Regression and ARIMA time series models separately

and compare the results with PARIMA model.

For the Passive-Aggressive Regression model, the predicted view-

port for a specific frame is computed using the objects’ coordinates

in that frame and the predicted viewport of the previous frame. For

the ARIMA model, on the other hand, the predicted viewport for

a chunk of frames is simply obtained using the actual viewports

of the previous chunk, which is essentially the same as the ‘Inter-

mediate Viewport’ in Figure 3. We report QoE and Manhattan tile

error for the three models for different videos averaged over all

users. We plot the QoE for each model on dataset ds1 in Figure 7

and tabulate the Manhattan Tile Error in Table 1.

Model Paris Diving Roller Timelapse Venice
PARIMA 0.612 0.337 0.234 0.685 0.353

PA 1.366 1.374 1.412 1.097 1.130

ARIMA 0.643 0.368 0.305 0.779 0.438

Table 1: Average Manhattan Tile Error for PARIMA, PA Re-
gression, ARIMA Time Series Models

We can see that PARIMA has a superior QoE and a lower tile

error than the individual models. Passive-Aggressive Regression

suffers from high tile errors due to the propagation of error over

multiple frames. Since the predicted output of one frame is fed as

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

Video

Q
oE

0.00

50.00

100.00

150.00

200.00

Paris Diving Roller Timelapse Venice

PARIMA PA Regression ARIMA Time Series

QoE for videos in ds1

Figure 7: QoE of PARIMA, PA Regression and ARIMA Time
Series Models

an input to the next frame, the error in a certain viewport predic-

tion gets propagated to the further frames. The Passive-Aggressive

component shows great adaptivity due to its online nature and effi-

ciently uses object trajectories to determine significance of various

parts of the frames, leading to an overall useful model for view-

port prediction. Similar inferences were obtained for ds2. ARIMA

time series model, on the other hand, has low prediction errors and

strengthens the Passive-Aggressive component when coupled into

the PARIMAmodel. The combined model has higher QoE and lower

prediction errors than any of the two models, which validates the

claim that the augmentation of the Passive Aggressive Regression

and ARIMA models generates a superior model.

5.3 Measure of Object Contribution
In our research, we claimed that a user’s viewport depends upon

the trajectory of the prime objects in the video. Since it also remains

in the vicinity of the previous viewport, we use the last information

viewport in the model effectively to predict the next chunk of

viewports. To verify the above claim, we evaluate the percentage

contribution of object trajectories in predicting the viewport. We

present the results for the X-coordinate of the viewport since it

typically has higher variability compared to the Y-coordinate. The

object contribution essentially determines how significant they are

in predicting the viewport of the user.

From Eq. 4, we get the contribution of object trajectories in

the prediction of the X coordinate of the viewport at frame 𝑓 as∑𝑁𝑜𝑏 𝑗

𝑖=1
𝜃𝑖𝑥 .𝑂𝑋𝑖𝑓 , while𝜃0𝑥+𝜃𝑋 .𝑋𝐴𝑅𝐼𝑀𝐴

𝑓
is denoted as ‘Intermediate

Viewport Contribution’. We find the proportion of contribution of

object trajectory over the length of the video, averaged across all

users which is shown in Figure 8 for the best and worst average

object contribution for videos in ds1 and ds2. For all the videos in

ds1 and ds2, we further report the average percentage contribution

across all users for all frames in Table 2.

Table 2 tabulates the number of objects detected by our object

tracking algorithm and the average percentage contribution of

object trajectories in predicting the user viewport. As observed, the

percentage object contribution varies from 27.2% to 43.6% in our

model for ds2 while ranging from 27.5% to 40.1% for ds1, with an

average of 33.8%. However, the standard deviation is only 5.58%,

(a) Best in ds1: Venice (b) Worst in ds1: Roller

(c) Best in ds2: WeirdAI (d) Worst in ds2: Surfing

Figure 8: Percentage contribution of objects and past view-
port in final prediction from PARIMA. Plots show the ob-
ject contribution over the videos’ length having the best and
worst average object contribution %.

Video # Objects Detected Avg. Object
Contribution (%)

ds1

Paris 8 31.5

Diving 41 30.9

Roller 66 27.5

Timelapse 61 39.5

Venice 14 40.1

ds2

Sandwich 41 27.4

Skiing 77 31.5

Alien 92 32.1

WeirdAI 25 43.6

Surfing 40 27.2

War 397 34.5

Cooking 1105 36.3

Football 166 42.8

Rhinos 77 27.9

Average 157 33.8
Table 2: Average Percentage Object Trajectory Contribution

and hence object trajectories contribute to roughly one-third of

the viewport prediction on average. Even though Surfing of ds2

shows the worst object contribution among all the other videos, it

is not insignificant compared to the average of 33.8%. From Figure 8,

we see that the object contribution of Surfing increases as we play

the video further, showing that the model learns that the viewport

depends on the object trajectory. ForWeirdAI, which has the best

average object contribution, a consistent value of around 40% is

maintained, similar to Venice.
Using the above results, it is evident that object trajectories play

an important role in determining the viewport of the object, as

they have significant contributions in the prediction. The use of

object trajectories improving the PARIMA model over the ARIMA

model in Table 1 depicts that tile error reduces upon the inclusion

of object trajectories, thus further justifying the claim that video

A
U
T
H
O
R
S
’
C
O
P
Y

PARIMA: Viewport Adaptive 360-Degree Video Streaming WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

PARIMA 163.29 165.22 178.23 136.36 153.01 132.57 141.75 149.13 125.11 123.18 142.15 149.81 117.56 153.62

Clust 102.28 89.59 137.81 71.47 103.27 128.43 90.44 139.71 115.92 109.11 109.92 125.78 83.51 144.55

PanoSalNet 67.79 53.17 65.71 62.24 74.50 87.89 88.80 104.28 99.36 94.76 96.62 103.92 96.49 116.77

NABA 47.41 38.34 53.15 66.77 53.91 68.44 73.26 98.69 82.00 83.22 93.00 95.30 78.33 100.68

Figure 9: QoE comparison of PARIMA with PanoSalNet, Clust and NABA models

content, in terms of object trajectories, play an essential role in

viewport prediction.

5.4 Baseline Comparison
Finally, to elicit the efficacy of our model, we evaluate PARIMA
against three state-of-the-art baselines: PanoSalNet,Clust andNABA.
We discussed in Section 4 how these baselines are congruent or

effective in elucidating the effeciency of the PARIMA model.

PanoSalNet and Clust provide us with two viewport prediction

models. We use them to predict viewports along with the bitrate

allocation scheme discussed in Section 3.3. We find the Manhattan

Tile Error and QoE for the videos in ds1 and ds2 averaged across

all users across all chunks. The results for the Tile Error and QoE

are shown in Table 3 and Figure 9 respectively.

Video PARIMA PanoSalNet Clust

ds1

Paris 0.612 1.832 1.068

Diving 0.337 1.934 1.072

Roller 0.234 1.561 0.865

Timelapse 0.685 1.874 1.205

Venice 0.353 1.867 1.093

ds2

Sandwich 0.144 1.645 1.097

Skiing 0.156 2.691 1.337

Alien 0.149 2.347 0.982

WeirdAI 0.133 2.249 1.047

Surfing 0.177 1.629 1.335

War 0.178 1.661 1.089

Cooking 0.159 1.355 1.484

Football 0.175 2.511 1.130

Rhinos 0.104 2.420 0.882

Table 3: Tile Errors for PARIMA, PanoSalNet and Clust

As it can be observed from Figure 9, PARIMA exhibits a higher

QoE than the two baselines for all the videos, with PanoSalNet
being the worse of the three. Clust does not consider video contents
while predicting viewport which, as discussed in Section 5.3, play

a significant role in PARIMA. Clust clusters the users based on

viewport history and matches a new user to a cluster to predict

the viewport. However, such a scheme can work for videos that

particularly focuses on a character, as is the case for many videos in

ds2. In ds1, however, the objects are spaced throughout the frame,

and different users can have different viewing patterns. Hence, it

becomes difficult to cluster users, or the new users can exhibit a

different viewing pattern. It can be observed from Figure 9, that for

videos in ds1, Clust performs much poorer than PARIMA while the

two methods are comparable for many videos in ds2.

Since PanoSalNet uses a saliency map to capture the video’s

content and employs LSTM based learning, its weights are not

dynamically changed w.r.t. user preferences. Thus is often fails to

categorize abrupt user behavior and allocates poor bitrate distribu-

tion among the tiles. This gets translated into a poorer prediction

and hence a lower QoE. PARIMA obtained an average improvement

of 78.67% in QoE over PanoSalNet and 35.38% over Clust. In Table

3, we see similar results with PARIMA performing better than the

other two baselines.

Clust can work well only when we have an existing head move-

ment dataset of a sufficient set of users for efficient clustering,

which would also essentially mean storing the head movements of

all users. Similarly PanoSalNet use existing head movement records

to generate the saliency map. PARIMA, on the other hand, just re-

quires the object trajectory information, calculated one-time on

the server side, and decouples the user viewport prediction from

the viewports of other users, leading to lower memory/storage

consumption, faster prediction and easy extensiblity to new videos.

The model updates ensure that higher weights are given to the

objects which the user is inclined to watch, leading to better user

adaptation and hence, better QoE.

NABA model of bitrate allocation assumes no viewport predic-

tion, and bitrate is allocated to each of the tiles in the chunk of

frames equally. Hence, it is non-adaptive. As evident from Figure

9, NABA exhibits the least QoE compared to the other models.

PARIMA performs comfortably better than NABA for all the videos

with an average of 117.88% improvement in adaptivity, hence veri-

fying viewport-adaptivity for our model.

A
U
T
H
O
R
S
’
C
O
P
Y

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Lovish Chopra, Sarthak Chakraborty, Abhijit Mondal, and Sandip Chakraborty

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel tile-based viewport prediction

model PARIMA, that takes into account the video contents along

with user head movement history to predict viewport for the future

frames in the video. We have used object trajectories as a repre-

sentative measure for the video content since they are exclusive

to the video. We have shown through our experiments that while

predicting the viewport, PARIMA assigns around 34% weightage to

the object’s position on an average. This verifies our claim that the

viewport of a user depends not only on the previous viewport but

also upon the trajectory of prime objects present in the video.

Our system uses a 1-second chunk duration for viewport pre-

diction and streaming. We have used a pyramid bitrate allocation

scheme to allocate a higher bitrate to the predicted viewport and

gradually decrease it as the tiles move away from the viewport.

We evaluated PARIMA and compared its performance against the

current state-of-the-art video streaming solutions. Our evaluations

show that PARIMA offers better QoE relative to other state-of-the-

art methods.

In future, we plan to extend our work by predicting network in-

consistencies and coupling the viewport-adaptive streamingmethod-

ology with network adaptivity. We also plan to incorporate audio

channel as a supplemental representation of the video content,

which includes various challenges including complex representa-

tion of the video and the presence of 3D audio. We plan to validate

our work further by using more extensive datasets.

REFERENCES
[1] 2017. Bringing pixels front and center in VR video.

https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-

video/. (2017).

[2] 2017. Facebook End-to-end optimizations for dynamic streaming.

https://engineering.fb.com/video-engineering/end-to-end-optimizations-

for-dynamic-streaming/. (2017).

[3] 2018. HEVC(H.265): What is it and Why Should You Care?

https://blog.frame.io/2018/09/24/hevc-format-wars/. (2018).

[4] 2020. Equirectangular Projection. https://en.wikipedia.org/wiki/

Equirectangular_projection. (2020).

[5] 2020. Pyquaternion, Python module for representing and using quaternions.

http://kieranwynn.github.io/pyquaternion/. (2020).

[6] 2020. vrProjector. https://github.com/bhautikj/vrProjector. (2020).

[7] Ratnadip Adhikari and R. K. Agrawal. 2013. An Introductory Study on Time

Series Modeling and Forecasting. arXiv:cs.LG/1302.6613

[8] Patrice Rondao Alface, Jean-François Macq, and Nico Verzijp. 2012. Interac-

tive omnidirectional video delivery: A bandwidth-effective approach. Bell Labs
Technical Journal 16, 4 (2012), 135–147.

[9] Mathias Almquist, Viktor Almquist, Vengatanathan Krishnamoorthi, Niklas Carls-

son, and Derek Eager. 2018. The prefetch aggressiveness tradeoff in 360 video

streaming. In Proceedings of the ACM MMSys 2018.
[10] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah Ramli, and Xin Liu. 2016.

Shooting a moving target: Motion-prediction-based transmission for 360-degree

videos. In 2016 IEEE International Conference on Big Data (Big Data). IEEE, 1161–
1170.

[11] N. Bouzakaria, C. Concolato, and J. Le Feuvre. 2014. Overhead and performance

of low latency live streaming using MPEG-DASH. In Proceedings of the IISA 2014.
[12] Jiawen Chen, Miao Hu, Zhenxiao Luo, Zelong Wang, and Di Wu. 2020. SR360:

boosting 360-degree video streaming with super-resolution. In Proceedings of the
30th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video. 1–6.

[13] Xavier Corbillon, Francesca De Simone, and Gwendal Simon. 2017. 360-degree

video head movement dataset. In Proceedings of the ACM MMSys 2017.
[14] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.

Viewport-adaptive navigable 360-degree video delivery. In Proceedings of the
IEEE ICC 2017.

[15] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram

Singer. 2006. Online passive-aggressive algorithms. Journal of Machine Learning
Research 7, Mar (2006), 551–585.

[16] M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R.

Das. 2020. Streaming 360-Degree Videos Using Super-Resolution. In Proceedings
of the IEEE INFOCOM 2020.

[17] Wei Dong, Zihui Ge, and Seungjoon Lee. 2011. 3G Meets the Internet: Under-

standing the Performance of Hierarchical Routing in 3G Networks. In Proceedings
of the ITC 2011.

[18] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and

Cheng-Hsin Hsu. 2017. Fixation prediction for 360 video streaming in head-

mounted virtual reality. In Proceedings of the ACM NOSSDAV 2017.
[19] Ching-Ling Fan, Wen-Chih Lo, Yu-Tung Pai, and Cheng-Hsin Hsu. 2019. A

Survey on 360° Video Streaming: Acquisition, Transmission, and Display. ACM
Computing Surveys (CSUR) 52, 4 (2019), 71.

[20] Vamsidhar Reddy Gaddam, Michael Riegler, Ragnhild Eg, Carsten Griwodz, and

Pål Halvorsen. 2016. Tiling in interactive panoramic video: Approaches and

evaluation. IEEE Transactions on Multimedia 18, 9 (2016), 1819–1831.
[21] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen

Jiang. 2019. Pano: Optimizing 360 video streaming with a better understanding

of quality perception. In Proceedings of the ACM SIGCOMM 2019.
[22] Max Halford, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse, and Adil Zouitine.

2019. creme, a Python library for online machine learning. https://github.com/

MaxHalford/creme

[23] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. 2004. An algorithm for multiple

object trajectory tracking. In Proceedings of the IEEE CVPR 2004.
[24] faculty.smu.edu. [n.d.]. Augmented Dickey-Fuller Unit Root Tests. ([n. d.]).

[25] Jonathan Kua, Grenville Armitage, and Philip Branch. 2017. A survey of rate

adaptation techniques for dynamic adaptive streaming over HTTP. IEEE Com-
munications Surveys & Tutorials 19, 3 (2017), 1842–1866.

[26] Jean Le Feuvre, Cyril Concolato, and Jean-Claude Moissinac. 2007. GPAC: Open

Source Multimedia Framework. In Proceedings of the 15th ACM International Con-
ference on Multimedia (Augsburg, Germany) (MM ’07). Association for Computing

Machinery, New York, NY, USA, 1009–1012. https://doi.org/10.1145/1291233.

1291452

[27] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive

video streaming with pensieve. In Proceedings of the ACM SIGCOMM 2017.
[28] Afshin Taghavi Nasrabadi, Aliehsan Samiei, and Ravi Prakash. 2020. Viewport

Prediction for 360° Videos: A Clustering Approach. In Proceedings of the ACM
NOSSDAV 2020.

[29] Anh Nguyen and Zhisheng Yan. 2019. A saliency dataset for 360-degree videos.

In Proceedings of the ACM MMSys 2019.
[30] Anh Nguyen, Zhisheng Yan, and Klara Nahrstedt. 2018. Your attention is unique:

Detecting 360-degree video saliency in head-mounted display for head movement

prediction. In Proceedings of the ACMMM 2018.
[31] Tam V Nguyen, Mengdi Xu, Guangyu Gao, Mohan Kankanhalli, Qi Tian, and

Shuicheng Yan. 2013. Static saliency vs. dynamic saliency: a comparative study.

In Proceedings of the ACMMM 2013.
[32] Sohee Park, Arani Bhattacharya, Zhibo Yang, Mallesham Dasari, Samir R Das,

and Dimitris Samaras. 2019. Advancing User Quality of Experience in 360-degree

Video Streaming. In Proceedings of the IFIP Networking 2019.
[33] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare:

Practical viewport-adaptive 360-degree video streaming for mobile devices. In

Proceedings of the ACM MobiCom 2018.
[34] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.

arXiv preprint arXiv:1804.02767 (2018).

[35] Thomas Stockhammer. 2011. Dynamic adaptive streaming overHTTP–: standards

and design principles. In Proceedings of the ACM MMSys 2011.
[36] Liyang Sun, Yixiang Mao, Tongyu Zong, Yong Liu, and Yao Wang. 2020. Flocking-

based live streaming of 360-degree video. In Proceedings of the 11th ACM Multi-
media Systems Conference. 26–37.

[37] Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Ylä-Outinen, Jarno Vanne,

and Timo D. Hämäläinen. 2016. Kvazaar: Open-Source HEVC/H.265 Encoder. In

Proceedings of the ACMMM 2016.
[38] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A dataset for

exploring user behaviors in VR spherical video streaming. In Proceedings of the
ACM MMSys 2017.

[39] Lan Xie, Xinggong Zhang, and Zongming Guo. 2018. Cls: A cross-user learning

based system for improving qoe in 360-degree video adaptive streaming. In

Proceedins of the ACMMM 2018.
[40] Alper Yilmaz, Omar Javed, and Mubarak Shah. 2006. Object tracking: A survey.

Acm computing surveys (CSUR) 38, 4 (2006), 13–es.
[41] Alireza Zare, Alireza Aminlou, Miska M Hannuksela, and Moncef Gabbouj. 2016.

HEVC-compliant tile-based streaming of panoramic video for virtual reality

applications. In Proceedings of the ACMMM 2016.
[42] Yuanxing Zhang, Pengyu Zhao, Kaigui Bian, Yunxin Liu, Lingyang Song, and Xi-

aoming Li. 2019. DRL360: 360-degree Video Streaming with Deep Reinforcement

Learning. In Proceedings of the IEEE INFOCOM 2019.

https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
https://engineering.fb.com/video-engineering/end-to-end-optimizations-for-dynamic-streaming/
https://engineering.fb.com/video-engineering/end-to-end-optimizations-for-dynamic-streaming/
https://blog.frame.io/2018/09/24/hevc-format-wars/
https://en.wikipedia.org/wiki/Equirectangular_projection
https://en.wikipedia.org/wiki/Equirectangular_projection
http://kieranwynn.github.io/pyquaternion/
https://github.com/bhautikj/vrProjector
http://arxiv.org/abs/cs.LG/1302.6613
https://github.com/MaxHalford/creme
https://github.com/MaxHalford/creme
http://faculty.smu.edu/tfomby/eco6375/BJ%20Notes/ADF%20Notes.pdf
https://doi.org/10.1145/1291233.1291452
https://doi.org/10.1145/1291233.1291452

	Abstract
	1 Introduction
	2 Related Work
	3 Systems Overview
	3.1 Video Preprocessing
	3.2 Viewport Prediction
	3.3 Bitrate Allocation

	4 Evaluation Testbed
	5 Evaluation Results
	5.1 Optimal Chunk Size Prediction
	5.2 Enhancement over Individual Models
	5.3 Measure of Object Contribution
	5.4 Baseline Comparison

	6 Conclusion and Future Work
	References

